Summary

Synthese von neunatomige deltaedrischen Zintl-Ionen von Germanium und deren Funktionalisierung mit organischen Gruppen

Published: February 11, 2012
doi:

Summary

Wir präsentieren die Hochtemperatur-Synthese intermetallischer Vorläufer K<sub> 4</sub> Ge<sub> 9</sub>, Deren Auflösung in Ethylendiamin bilden Ge<sub> 9</sub<sup> 4 -</sup> Deltaedrischen Zintl-Ionen, und die Reaktion der Cluster mit Alkinen zu Organo-Zintl-Ionen bilden. Letztere werden durch Elektrospray-Massenspektrometrie in Lösungen und durch Einkristall-Röntgenbeugung im festen Zustand aus.

Abstract

Obwohl die ersten Untersuchungen von Zintl-Ionen Datum zwischen den späten 1890er und frühen 1930er Jahren wurden sie strukturell nicht erst viele Jahre später. Gekennzeichnet 1,2 Deren Redoxchemie ist noch jünger, nur etwa zehn Jahre alt, aber trotz dieser kurzen Geschichte dieser deltaedrischen Cluster-Ionen E 9 N-(E = Si, Ge, Sn, Pb, n = 2, 3, 4). haben bereits interessante und vielfältige Reaktivität gezeigt und haben an der Spitze des sich schnell entwickelnden und spannenden neuen Chemie seit 3-6 Bemerkenswerte Meilensteine ​​sind Die oxidative Kupplung von Ge 9 4 – Clustern zu Oligomeren und unendlichen Ketten, deren Metallierung 7-19, 14-16,20-25 Capping durch Übergangsmetallkomplexe metallorganische Fragmente, 26-34 Einsetzen eines Übergangsmetallatom in der Mitte des der Cluster, die manchmal mit Capping und Oligomerisierung, 35-47 Zugabe von Hauptgruppen-metallorganische Fragmente als exo-gebundene Substituenten kombiniert wird,48-50 und Funktionalisierung mit verschiedenen organischen Reste durch Reaktionen mit organischen Halogeniden und Alkinen. 51-58

Diese letztere Entwicklung von organischen Fragmenten Befestigung direkt an der Cluster hat sich ein neues Feld, nämlich Organo-Zintl-Chemie, die potentiell fruchtbaren für weitere synthetische Erkundungen ist geöffnet, und es ist die Schritt-für-Schritt-Verfahren für die Synthese von Germanium-Divinyl Cluster beschrieben. Die ersten Schritte beschreiben die Synthese einer intermetallischen Vorläufer von K 4 Ge 9, aus dem die Ge 9 4 – Cluster werden später in Lösung extrahiert. Dies beinhaltet kondensiertem Silica Glasbläserei, Lichtbogen-Schweißen von Niob-Container, und die Handhabung der stark luft-empfindlichen Materialien in einer Glove-Box. Die Luft-empfindliche K 4 Ge 9 wird dann in Ethylendiamin in der Box gelöst und dann alkenyliert durch eine Reaktion mit Me 3 SiC ≡ CSiMe 3. Die Reaktion wird durch elek gefolgttrospray Massenspektrometrie, während die resultierende Lösung wird zum Erhalten Einkristalle mit den funktionalisierten Cluster [H 2 C = CH-Ge-9-CH = CH 2] 2 verwendet -. Zu diesem Zweck wird die Lösung zentrifugiert, filtriert und vorsichtig mit einem Toluol-Lösung von 18-Krone-6 geschichtet. Ungestört für ein paar Tage, in der die so geschichteten Lösungen orangefarbene kristalline Blöcke von [K (18-Krone-6)] 2 [Ge 9 (HCCH 2) 2] • en, die durch Einkristall-Röntgenbeugung charakterisiert wurden .

Der Prozess-Standard hebt Reaktion Techniken, Aufarbeitung und Analyse zu funktionalisierten deltaedrischen Zintl-Clustern. Es ist zu hoffen, dass es zur weiteren Entwicklung und das Verständnis dieser Verbindungen in der Gemeinschaft als Ganzes zu helfen.

Protocol

1. Vorbereiten Niob Tubes Vor dem Schneiden der Niob (Nb) Röhren, bereiten Nb-Reinigungslösung. In einem 500 ml Kunststoff-Flasche, messen aus und fügen Sie über einen 100 ml Messzylinder Die folgenden Stammlösungen als erhalten: 110 ml H 2 SO 4, gefolgt von 50 ml HNO 3, gefolgt von 40 ml HF. Gut mischen und erlauben Erreichen der Raumtemperatur, bevor Sie. Messen der Nb-Rohr, 4,5 cm in der Länge und Schnitt mit einem Rohrschneider. Vermeiden Sie ein Knicken de…

Discussion

Es ist wichtig, gut reinigen die partiell oxidierten Nb Rohren. Wenn jedoch die Rohre zu lange in der Nb Reinigungslösung mehr verfügbar sind, wird diese stark beeinträchtigen die Dicke des Rohres. So, 10 – 15 Sekunden sind zwingend erforderlich und die Rohre sollten sehr glänzende am Ende (Abb. 3). Nachdem die Rohre im Inneren des Fused-Silica-Jacke sind versiegelt sollten sie wieder mit einer verdünnten Säure Nb Lösung gereinigt werden. Dies sollte sich in milde Aufbrausen führen, Reinigung keine oxidierte Ber…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Die Autoren bedanken sich bei der National Science Foundation für die kontinuierliche finanzielle Unterstützung (CHE-0742365) und für den Kauf von einem Bruker APEX-II-Diffraktometer (CHE-0443233) und einem Bruker micrOTOF-II-Massenspektrometer (CHE-0741793) danken. Die Autoren möchten auch CEST Einrichtung für ihre Nutzung des Micromass Quattro-LC-Massenspektrometer danken.

Materials

Name of the reagent Company Catalogue number Comments
D8-Xray diffractometer Bruker Bruker APEX II  
Electrospray mass spectrometer Bruker Microtof-II  
Electrospray mass spectrometer Micromass Quattro-LC triple -quadropole
Drybox Innovative Technology S-1-M-DL IT-Sys1 model
Inert Gas/Vacuum Shielded
Arc Welding Arrangement
LDS Vacuum Products Special Order
Arc Welder Power Source Miller Maxstar-91  
Welding Rubber Gloves The Home Depot  KH643  
Electric Engraver Burgess Products 74 Vibro-Graver
Circular Glass Saw Pistorius Machine Co. Inc GC-12-B  
Tube Furnace Lindberg/Blue M TF55035 Minimite Laboratory Tube Furnace, Moldatherm (1100 °C)
Glass Drying Oven Fisher Scientific 13-247-650G  
High Vacuum Hg Schlenk-Line Special Order Univ Of Notre Dame Alternative: Edwards E050/60; VWR International; Cat. No. EVB302-07-110
Large Torch Victor JT100C Welding torch, tip: Victor 5-W-J
Small Torch Veriflo Co. 3A Blow-pipe
Tesla Coil VWR International KT691550-0000 Leak detector
Stirrer/Hot -Plate VWR International 12620-970 VWR HOT PLATE STR DY-DUAL120V
Balance Denver Instrument Co. 100A XE Series
Centrifuge LW Scientific E8C-08AV-1501 Variable speed
Graphite Reamer, (flaring) ABR Imagery, Inc. 850-523 B01 Open holes in Glass Blowing and flaring edges
Striker Fisher Scientific 12-007  
Vise-Grips The Home Depot 0902L3SM  
Pipe-Cutter The Home Depot 32820  
Cutting Pliers The Home Depot 437  
Plastic Beaker VWR International 13890-046  
Measuring Cylinder VWR International 65000-006 Careful, HF etches glass (if using a glass one)
Large Plastic Bottle VWR International 16128-542  
13 x 100 Test-Tubes VWR International 47729-572 CULTURE TUBE 13X100 CS1000
Laboratory (Rubber) Stoppers Sigma Chemical Co. Z164437-100EA Size 00
Test-Tube Rack VWR International 60196-702 10-13 mm tube OD
Stir-Bars StirBars.com/Big Science Inc. SBM-0803-MIC PTFE 8×3 mm Micro
Glass Pipettes VWR International 14673-043 VWR PIPET PASTEUR 9IN CS1000
Rubber Bulbs VWR International 56311-062 Latex, thin walled
Glass Wool Unifrax I LLC 6048 Fiberfrax Bulk Fiber Insulation, Ceramic fiber
Glass Slides VWR International 16004-422 75x25x1mm, Microscope Slides
Paratone-N oil Hampton Research Parabar 10312 Known as: Paratone-N, Paratone-8277, Infineum V8512
High Vacuum Silicone Grease VWR International 59344-055 Dow Corning
Liquid Nitrogen Univ. of Notre Dame    
Argon Gas Cylinder Praxair Distribution Inc. TARGHP  
Nitrogen Gas Cylinder Praxair Distribution Inc. QNITPP  
Oxygen Gas Cylinder Praxair Distribution Inc. OT 337 cf CYL
Hydrogen Gas Cylinder Praxair Distribution Inc. HK 195 cf CYL
Propane Gas Cylinder/source Univ. of Notre Dame UND  
Quartz tubing, Lg Quartz Scientific Inc. 100020B 20 mm id x 22mm od x 48″ clear fused quart tubing
Quartz tubing, Md Quartz Scientific Inc. 100007B Clear Fused Quartz Tubing,7mm id x 9mm od x 48″
Round Bottom Quartz Joint Quartz Scientific Inc. 6160189B Ball joint
Quartz Safety Glasses Wale Apparatus 11-1127 waleapparatus.com
Pyrex Safety Glasses Wale Apparatus 11-2125-B3 For clear and color borosilicate glass
Blow Hose Kit Glass House BH020 glasshousesupply.com
Niobium Tubes Shaanxi Tony Metals Co., Ltd Niobium Tube, 50 ft Seamless Niobium Tube Outside diameter: 0.375 (±0.005) inches.
Wall thickness: 0.02(±0.003) Inches Niobium should be annealed.
PEEK Starter Kit for Mass Spect Waters PSL613321 PEEK (PolyEtherEtherKetone) tubing, nuts, ferrule, fits
Mass Spect Needle Set VWR International 60373-992 Hamilton Manufacturer (81165)
H2SO4 VWR International BDH3072-2.5LG ACS Grade
HNO3 VWR International BDH3046-2.5LPC ACS Grade
HF VWR International BDH3040-500MLP ACS Grade
Distilled Water Univ. of Notre Dame UND  
Acetone VWR International BDH1101-4LP  
Ethylenediamine VWR International AAA12132-0F 99% 2.5 L
Toluene VWR International 200004-418 99.8 %, anhydrous
Mercury Strem Chemicals, Inc. 93-8046  
Potassium (K) metal Strem Chemicals, Inc. 19-1989 Sealed in glass ampoule under Ar
Germanium (Ge) powder VWR International AA10190-18 GERM PWR -100 MESH 99.999% 50G
Bistrimetylsilylacetylene,
(Me3SiC≡CCSiMe3)
Fischer Scientific AC182010100  
18-crown-6
(1,4,7,10,13,16-Hexaoxacyclooctadecane)
VWR International 200001-954 99%, 25 gm
2,2,2-crypt
(4,7,13,16,21,24-Hexaoxa-1,10 diazabicyclo[8.8.8]hexacosane)
Sigma Aldrich 291110-1G 98%

References

  1. Corbett, J. D. Polyatomic Zintl Anions of the Post-Transition Elements. Chem. Rev. 85, 383-397 (1985).
  2. Fässler, T. F. The renaissance of homoatomic nine-atom polyhedral of the heavier carbon-group elements Si-Pb. Coord. Chem. Rev. 215, 347-377 (2001).
  3. Sevov, S. C., Goicoechea, J. M. Chemistry of Deltahedral Zintl Ions. Organometallics. 25, 5678-5692 (2006).
  4. Sevov, S. C., Davies, A. G. . Tin Chemistry: Fundamentals, Frontiers and Applications. , 138-151 (2008).
  5. Scharfe, S., Fässler, T. F. Polyhedral nine-atom clusters of tetrel elements and intermetalloid derivatives. Phil. Trans. R. Soc. A. , 368-1265 (2010).
  6. Scharfe, S., Kraus, F., Stegmaier, S., Schier, A., Fässler, T. F. Zintl Ions, Cage Compounds, and Intermetalloid Clusters of Group 14 and Group 15 Elements. Angew. Chem. Int. Ed. 50, 3630-3670 (2011).
  7. Xu, L., Sevov, S. C. Oxidative Coupling of Deltahedral [Ge9]4- Zintl Ions. J. Am. Chem. Soc. 121, 9245-9246 (1999).
  8. Hauptmann, R., Fässler, T. F. Low Dimensional Arrangements of the Zintl Ion [Ge9-Ge9]6- and Chemical Bonding in [Ge6]2-, [Ge9=Ge9]6- and 1∞{[Ge9]}2-. Z. Anorg. Allg. Chem. 629, 2266-2273 (2003).
  9. Suchentrunk, C., Daniels, J., Somer, M., Carrillo-Cabrera, W., Korber, N. Synthesis and Crystal Structures of the Polygermanide Ammoniates K4Ge9•9NH3, Rb4Ge9•5NH3 and Cs6Ge18•4NH3. Z. Naturforsch. 60b, 277-283 (2005).
  10. Ugrinov, A., Sevov, S. C. Ge9=Ge9=Ge9]6-: A Linear Trimer of 27 Germanium Atoms. J. Am. Chem. Soc. 124, 10990-10991 (2002).
  11. Yong, L., Hoffmann, S. D., Fässler, T. F. The Controlled Oxidative coupling of Ge94- Zintl Anions to a Linear Trimer [Ge9=Ge9=Ge9]6. Z. Anorg. Allg. Chem. 631, 1149-1153 (2005).
  12. Ugrinov, A., Sevov, S. C. Ge9=Ge9=Ge9=Ge9]8-: A Linear Tetramer of Nine-Atom Germanium Clusters, a Nanorod. Inorg. Chem. 42, 5789-5791 (2003).
  13. Yong, L., Hoffmann, S. D., Fässler, T. F. Oxidative Coupling of Ge94- Zintl Anions – Hexagonal Rod Packing of Linear [Ge9=Ge9=Ge9=Ge9]8-. Z. Anorg. Allg. Chem. 630, 1977-1981 (2004).
  14. Denning, M. S., Goicoechea, J. M. [Hg3(Ge9)4]10-: a nanometric molecular rod precursor to polymeric mercury-linked cluster chains. Dalton Trans. , 5882-5885 (2008).
  15. Boeddinghaus, M. B., Hoffmann, S. D., Fässler, T. F. Synthesis and Crystal Structure of [K([2,2,2]crypt)]2[HgGe9](dmf). Z. Annorg. Allg. Chem. 633, 2338-2341 (2007).
  16. Nienhaus, A., Hauptmann, R., Fässler, T. F. 1∞[HgGe9]2- –A Polymer with Zintl Ions as Building Blocks Covalently Linked by Heteroatoms. Angew. Chem., Int. Ed. 41, 3213-3215 (2002).
  17. Downie, C., Tang, Z., Guloy, A. M. An Unprecedented 1∞[Ge9]2- Polymer: A Link between Molecular Zintl Clusters and Solid-State Phases. Angew. Chem., Int. Ed. 39, 337-340 (2000).
  18. Downie, C., Mao, J. -. G., Parmar, H., Guloy, A. M. The Role of Sequestering Agents in the Formation and Structure of Germanium Anion Cluster Polymers. Inorg. Chem. 43, 1992-1997 (2004).
  19. Ugrinov, A., Sevov, S. C. Synthesis of a chain of nine-atom germanium clusters accompanied with dimerization of the sequestering. 8, 1878-1882 (2005).
  20. Spiekermann, A., Hoffmann, S. D., Kraus, F., Fässler, T. F. Au3Ge18]5- – Gold-Germanium Cluster with Remarkable Au-Au Interactions. Angew. Chem., Int. Ed. 46, 1638-1640 (2007).
  21. Spiekermann, A., Hoffmann, S. D., Fässler, T. F., Krossing, I., Preiss, U. [Au3Ge45]9-–A Binary Anion Containing a {Ge45}. Cluster. Angew. Chem., Int. Ed. 46, 5310-5313 (2007).
  22. Wang, J. -. Q., Wahl, B., Fässler, T. F. [Ag(Sn9-Sn9)]5-: A Homoleptic Silver Complex of A Dimeric Sn9 Zintl Anion. Angew. Chem., Int. Ed. 49, 6592-6595 (2010).
  23. Scharfe, S., Fässler, T. F. VVarying Bonding Modes of the Zintl Ion [Ge9]4- in CuI Complexes: Syntheses and Structures of [Cu(η4-Ge9)(PR3)]3- (R = iPr, Cy) and [Cu(η4-Ge9)(η1-Ge9)]7-. Eur. J. Inorg. Chem. 8, 1207-1213 (2010).
  24. Yong, L., Boeddinghaus, M. B., Fässler, T. F. [Sn9HgSn9]6-: An Intermetalloid Zintl Ion with Two Sn9 Connected by Heteroatom. Z. Anorg. Allg. Chem. 636, 1293-1296 (2010).
  25. Rios, D., Gillett-Kunnath, M. M., Taylor, J. D., Oliver, A. G., Sevov, S. C. Addition of a Thallium Vertex to Empty and Centered Nine-Atom Deltahedral Zintl Ions of Germanium and Tin. Inorg. Chem. 50, 2373-2377 (2011).
  26. Eichhorn, B. W., Haushalter, R. C. Synthesis and Structure of closo-Sn9Cr(CO)34-: The First Member in a New Class of Polyhedral Clusters. J. Amer. Chem. Soc. 110, 8704-8706 (1988).
  27. Eichhorn, B. W., Haushalter, R. C. closo-[CrPb9(CO)3]4-: a 100 Year History of the Nonaplumbide Tetra-anion. J. Chem. Soc. Chem. Commun. , 937-938 (1990).
  28. Kesanli, B., Fettinger, J., Eichhorn, B. W. The closo-[Sn9M(CO)3]4- Zintl Ion Clusters where M = Cr, Mo, W: Two Structural Isomers and Their Dynamic Behavior. Chem. Eur. J. 7, 5277-5285 (2001).
  29. Kesanli, B., Fettinger, J., Gardner, D. R., Eichhorn, B. . The [Sn9Pt2(PPh3)]2- and [Sn9Ni2(CO)]3- Complexes: Two Markedly Different Sn9M2L Transition Metal Zintl Ion Clusters and Their Dynamic. 124, 4779-4788 (2002).
  30. Campbell, J., Mercier, H. P. A., Holger, F., Santry, D. P., Dixon, D. A., Schrobilgen, G. J. Syntheses, Crystal Structures, and Density Functional Theory Calculations of the closo-[1-M(CO)3(η4-E9)4- (E = Sn, Pb; M = Mo, W) Cluster Anions and Solution NMR Spectroscopic Characterization of [1-M(CO)3(η4-Sn9)4- (M = Cr, Mo, W). Inorg. Chem. 41, 86-107 (2002).
  31. Yong, L., Hoffmann, S. D., Fässler, T. F. Crystal Structures of [K(2.2.2-crypt)]4[Pb9Mo(CO)3]–Isolation of the Novel Isomers [(η5-Pb9)Mo(CO)3]4- beside [(η4-Pb9)Mo(CO)3]4. Eur. J. Inorg. Chem. , 3663-3669 (2005).
  32. Esenturk, E. N., Fettinger, J., Eichhorn, B. Synthesis and characterization of the [Ni6Ge13(CO)5]4- and [Ge9Ni2(PPh3)]2- Zintl ion clusters. Polyhedron. 25, 521-529 (2006).
  33. Rios, D., Sevov, S. C. The Elusive closo-Ge102- Zintl Ion: Finally “Captured” as a Ligand in the Complex [Ge10Mn(CO)4]3-. Inorg. Chem. 49, 6396-6398 (2010).
  34. Downing, D. O., Zavalij, P., Eichhorn, B. W. The closo-[Sn9Ir(cod)]3- and [Pb9Ir(cod)]3- Zintl Ions: Isostructural IrI Derivatives of the nido-E94- Anions (E = Sn, Pb). Eur. J. Inorg. Chem. , 890-894 (2010).
  35. Esenturk, E. N., Fettinger, J., Lam, Y. -. F., Eichhorn, B. Pt@Pb12]2-. Angew. Chem. Int. Ed. 43, 2132-2134 (2004).
  36. Goicoechea, J. M., Sevov, S. C. [(Ni-Ni-Ni)@(Ge9)2]4-: A Linear triatomic Nickel Filament Enclosed in a Dimer of Nine-Atom Germanium Clusters. Angew. Chem. Int. Ed. 44, 4026-4028 (2005).
  37. Goicoechea, J. M., Sevov, S. C. [(Pd-Pd)@Ge18]4-: A Palladium Dimer Inside the Largest Single-Cage Deltahedron. J. Am. Chem. Soc. 127, 7676-7677 (2005).
  38. Esenturk, E. N., Fettinger, J., Eichhorn, B. The closo-Pb102- Zintl ion in the [Ni@Pb10]2 cluster. Chem. Commun. , 247-249 (2005).
  39. Goicoechea, J. M., Sevov, S. C. Deltahedral Germanium Clusters: Insertion of Transition-Metal Atoms and Addition of Organometallic Fragments. J. Am. Chem. Soc. 128, 4155-4161 (2006).
  40. Esenturk, E. N., Fettinger, J., Eichhorn, B. W. Synthesis, Structure, and Dynamic Properties of [Ni2Sn17]4. J. Am. Chem. Soc. 128, 12-13 (2006).
  41. Esenturk, E. N., Fettinger, J., Eichhorn, B. W. The Pb122- and Pb102- Zintl Ions and the M@Pb122- and M@Pb102- Cluster Series Where M = Ni, Pd, Pt. J. Am. Chem. Soc. 128, 9178-9186 (2006).
  42. Kocak, F. S., Zavalij, P., Lam, Y. F., Eichhorn, B. W. Solution Dynamics and Gas-Phase Chemistry of Pd2@Sn184. Inorg. Chem. 47, 3515-3520 (2008).
  43. Scharfe, S., Fässler, T. F., Stegmaier, S., Hoffmann, S. D., Ruhland, K. [Cu@Sn9]3- and [Cu@Pb9]3-: Intermetalloid Clusters with Endohedral Cu Atoms in Spherical Environments. Chem. Eur. J. 14, 4479-4483 (2008).
  44. Zhou, B., Denning, M. S., Kays, D. L., Goicoechea, J. M. Synthesis and Isolation of [Fe@Ge10]3-: A Pentagonal Prismatic Zintl Ion Cage Encapsulating an Interstitial Iron Atom. J. Am. Chem. Soc. 131, 2802-2803 (2009).
  45. Wang, J. -. Q., Stegmaier, S., Fässler, T. F. [Co@Ge10]3-: An Intermetalloid Cluster with Archimedean Pentagonal Prismatic Structure. Angew. Chem. Int. Ed. 48, 1998-2002 (2009).
  46. Wang, J. -. Q., Stegmaier, S., Wahl, B., Fässler, T. F. Step-by-Step Synthesis of the Endohedral Stannaspherene [Ir@Sn12]3- via the Capped Cluster Anion [Sn9Ir(cod)]3. Chem. Eur. J. 16, 1793-1798 (2010).
  47. Gillett-Kunnath, M. M. P. a. i. k., Jensen, J. I., Taylor, S. M., D, &. a. m. p. ;. J., Sevov, S. C. Metal-Centered Deltahedral Zintl Ions: Synthesis of [Ni@Sn9]4- by Direct Extraction from Intermetallic Precursors and of the Vertex-Fused Dimer [{Ni@Sn8(μ-Ge)1/2}2]4. Inorg. Chem. 50, 11695-11701 (2011).
  48. Ugrinov, A., Sevov, S. C. Ph2Bi-(Ge9)-BiPh2]2-: A Deltahedral Zintl Ion Functionalized by Exo-Bonded Ligands. J. Am. Chem. Soc. 124, 2442-2443 (2002).
  49. Ugrinov, A., Sevov, S. C. Derivatization of Deltahedral Zintl Ions by Nucleophilic Addition: [Ph-Ge9-SbPh2]2- and [Ph2Sb-Ge9-Ge9-SbPh2]4. J. Am. Chem. Soc. 125, 14059-14064 (2003).
  50. Ugrinov, A., Sevov, S. C. Rationally Functionalized Deltahedral Zintl Ions: Synthesis and Characterization of [Ge9-ER3]3-, [R3E-Ge9-ER3]2-, and [R3E-Ge9-Ge9-ER3]4- (E= Ge, Sn; R = Me, Ph). Chem. Eur. J. 10, 3727-3733 (2004).
  51. Hull, M., Ugrinov, A., Petrov, I., Sevov, S. C. Alkylation of Deltahedral Zintl Clusters: Synthesis of [R-Ge9-Ge9-R]4- (R = tBu, sBu, nBu, tAm) and Structure of [tBu-Ge9-Ge9-tBu]4. Inorg. Chem. 46, 2704-2708 (2007).
  52. Hull, M., Sevov, S. C. Addition of Alkenes to Deltahedral Zintl Clusters by Reaction with Alkynes: Synthesis and Structure of [Fc-CH=CH-Ge9-CH=CH-Fc]2-, an Organo-Zintl-Organometallic Anion. Angew. Chem. Int. Ed. 46, 6695-6698 (2007).
  53. Hull, M., Sevov, S. C. Organo-Zintl Clusters Soluble in Conventional Organic Solvents: Setting the Stage for Organo-Zintl Cluster Chemistry. Inorg. Chem. 46, 10953-10955 (2007).
  54. Chapman, D. J., Sevov, S. C. Tin-Based Organo-Zintl Ions: Alkylation and Alkenylation of Sn94. Inorg. Chem. 47, 6009-6013 (2008).
  55. Hull, M., Sevov, S. C. Functionalization of Nine-Atom Deltahedral Zintl Ions with Organic Substituents: Detailed Studies of the Reactions. J. Am. Chem. Soc. 131, 9026-9037 (2009).
  56. Kocak, F. S., Zavalij, P. Y., Lam, Y. -. F., Eichhorn, B. W. Substituent-dependent exchange mechanisms in highly fluxional RSn93- anions. Chem. Commun. , 4197-4199 (2009).
  57. Gillett-Kunnath, M. M., Petrov, I., Sevov, S. C. Heteroatomic Deltahedral Zintl Ions of Group 14 and their Alkenylation. Inorg. Chem. 48, 721-729 (2010).
  58. Gillett-Kunnath, M. M., Oliver, A. G., Sevov, S. C. “n-Doping” of Deltahedral Zintl Ions. J. Am. Chem. Soc. 133, 6560-6562 (2011).
  59. Gaumet, J. J., Strouse, G. F. Electrospray Mass Spectrometry of Semiconductor Nanoclusters: Comparative Analysis of Positive and Negative Ion Mode. J. Am. Soc. Mass. Spectrom. 11, 338-344 (2000).
  60. Fässler, T. F. Lone Pair Interactions in Zintl Phases: Band Structure and Real Space Analysis of the cP124 Clathrate Structure Type. Z. Anorg. Allg. Chem. 624, 569-577 (1998).
  61. Guloy, A. M., Ramlau, R., Tang, Z., Schnelle, W., Baitinger, M., Grin, Y. A guest-free germanium clathrate. Nature. 443, 320-323 (2006).
  62. Guloy, A. M., Tang, Z., Ramlau, R., Böhme, B., Baitinger, M., Grin, Y. Synthesis of the Clathrate-II K8.6(4)Ge136 by Oxidation of K4Ge9 in an Ionic Liquid. Eur. J. Inorg. Chem. 17, 2455-2458 (2009).
  63. Chandrasekharan, N., Sevov, S. C. Anodic Electrodeposition of Germanium Films from Ethylenediamine Solution of Deltahedral Ge94- Zintl Ions. J. Electrochem. Soc. 157, C140-C145 (2010).
  64. Zheng, W. J., Thomas, O. C., Lippa, T. P., Xu, S. J., Bowen, K. H. The Ionic KAl13 molecule: A stepping stone to cluster-assembled materials. J. Chem. Pys. 124, 144304-144304 (2006).
  65. Riley, A. E., Tolbert, S. H. Syntehsis and characterization of tin telluride inorganic/organic composite materials with nanoscale periodicity through solution-phase self-assembly: a new class of composite materials based on Zintl cluster self-oligomerization. Res. Chem. Intermed. 33, 111-124 (2007).
  66. Sun, D., Riley, A. E., Cadby, A. J., Richman, E. K., Korlann, S. D., Tolbert, S. H. Hexagonal nanoporous germanium through surfactant-driven self-assembly of Zintl Clusters. Nature. 441, 1126-1130 (2006).
check_url/kr/3532?article_type=t

Play Video

Cite This Article
Gillett-Kunnath, M. M., Sevov, S. C. Synthesis of Nine-atom Deltahedral Zintl Ions of Germanium and their Functionalization with Organic Groups. J. Vis. Exp. (60), e3532, doi:10.3791/3532 (2012).

View Video