Summary

一个培养人关节软骨细胞的三维系统在滑液

Published: January 31, 2012
doi:

Summary

一个3D系统培养人关节软骨在滑液的高层次描述。滑液反映关节软骨的最自然的微环境,并可以很容易地获得和存储。因此,该系统可用于软骨再生研究和筛选疗法治疗关节炎。

Abstract

软骨破坏的骨性关节炎的病理特征是中央在美国的事业,一个残疾的领先。在成人软骨没有非常有效的再生,在体内,因此,骨关节炎导致不可逆转的软骨丢失及伴有慢性疼痛和行动不便 1,2 。软骨组织工程提供了有希望的潜在的再生和恢复组织功能。这种技术通常涉及到播种天然或人工合成的支架和培养软骨细胞产生的三维构造过了一段时间,在一个平衡的介质中的工程目标的生物化学和生物力学成熟的组织 可以在体内3-6成缺损部位移植。软骨组织工程的成功实现,为软骨细胞的生长和外基质沉积的最佳条件是必不可少的。

在本机的关节腔,在北极的软骨ular表面的骨沐浴在滑液。这清晰和粘性流体股骨头关节软骨提供营养,并包含 7,8软骨细胞代谢的重要生长因子,细胞因子和酶。此外,滑液有利于低摩擦的软骨表面之间的运动,主要是通过分泌两个重要组成部分, 透明质酸和 lubricin 9 10。与此相反,组织工程化软骨是最常见的人工培养基培养。虽然这些媒体很可能能够为研究软骨细胞代谢提供更明确的条件,滑液最准确地反映关节软骨细胞,其中居住的自然环境

事实上,滑液容易获取和存储的优势,往往可以定期身体补充。一些团体补充滑液在培养基中的人类,牛,兔和狗的彗星hondrocytes,但主要用于滑液(低于20%)11-25只低的水平。虽然鸡,马和人类的软骨细胞已在滑液的百分比较高的中等培养,这些文化系统二维26-28。在这里,我们目前在3D系统培养人关节软骨细胞的方法,我们与滑液的高(可达100%)的比例超过21天的期限。这样做,我们克服了滑液的高粘度提出的一个主要障碍。该系统提供学习人体软骨在滑液在3D设置,可进一步与其他两个重要因素(氧张力和机械负荷)29,30,软骨构成的自然环境,模仿自然的环境相结合的可能性软骨生长。此外,该系统也可用于化验滑液对软骨细胞的活动,并为发展中国家提供了一个平台软骨再生技术和关节炎的治疗方案。

Protocol

一个培养人关节软骨细胞的三维系统在滑液在这项工作中,我们人体关节软骨细胞封装在使用修改后的制造商建议的封装协议( 龙沙 ,和31)的海藻酸钠珠。使用这些三维结构,我们已经发展为培养细胞中含有人体滑液的不同比例的中等文化制度和评估软骨基因表达的这些三维结构。 1。准备人关节软骨细胞三维(3D)封装(HAC) 解冻在3…

Discussion

在这份报告中,我们开发了一个人关节软骨细胞培养的方法,允许在一个中型的3D环境,它包含人体滑液的高浓度。滑液的主要成分构成的关节腔,关节软骨细胞所在的自然环境之一。然而,滑液的粘度一直是立体培养软骨细胞的长期的重大挑战。要克服的挑战,保持甚至养分分布在三维构造在粘稠的环境,并防止聚集,我们将不断的运动,温和的摇摆下的软骨结构。为了提高结构的软骨结构完?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们想感谢提供帮助滑液存储和离心罗宾奈(塔夫茨医学中心),智也内村和Dana凯恩斯(塔夫茨大学)。这项工作是由NIH(1R01AR059106 – 01A1为LZ)

Materials

Table of specific reagents and equipment:

Name of the Reagent Company Catalogue Number Comments
Alginate (Alginic Acid sodium salt) Sigma A2158-250G 2.4% solution stored at 40°C
Calcium Chloride Dihydrate, Granular J.T. Baker A19339
Chondrogenic Growth media Lonza CC-3156 (base media)  
CC-4409 (supplement)
Chondrogenic Differentiation Media Lonza CC-3226 (base media)  
CC-4408 (supplement)
Human articular chondrocytes Lonza CC-2550
Dapi (4′,6-Diamidino-2-phenylindole dihydrochloride) Sigma-Aldrich D9542
RNeasy mini kit (for RNA extraction) Qiagen 74104
PCR reagents: SYBR-green Quanta 95053-500
12 ml syringe Tyco-Kendall-Monoject 512852
22-Gague Hypodermic Needle Tyco-Kendall-Monoject 8881
Microscope Olympus IX71
Platform rocker Thermoscientific thermolyne Vari-mix
       
Primers sequences
Collagen IIa-forward 5′-TTC ATC CCA CCC TCT CAC AGT-3′
Collagen IIa-reverse 5′-CCTCTGCCTTGACCCGAA-3′
MMP13-forward 5′-TGT GCC CTT CTT CAC ACA GAC ACT-3′
MMP13-reverse 5′-GAG AGC AGA CTT TGA GTC ATT GCC-3′
Caspase 3-forward 5′-TCA TTA TTC AGG CCT GCC GTG GTA-3′
Caspase 3-reverse 5′-TGG ATG AAC CAG GAG CCA TCC TTT -3′

References

  1. Centers for Disease Control and P. Projected state-specific increases in self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitations–United States, 2005-2030. MMWR. Morb. Mortal. Wkly. Rep. 56, 423-425 (2007).
  2. Theis, K. A., Murphy, L., Hootman, J. M., Helmick, C. G., Yelin, E. Prevalence and correlates of arthritis-attributable work limitation in the US population among persons ages 18-64: 2002 National Health Interview Survey Data. Arthritis Rheum. 57, 355-363 (2007).
  3. Chung, C., Burdick, J. A. Engineering cartilage tissue. Adv. Drug. Deliv. Rev. 60, 243-262 (2008).
  4. Glowacki, J. In vitro engineering of cartilage. J. Rehabil. Res. Dev. 37, 171-177 (2000).
  5. Chokalingam, K., Hunter, S. A., Gooch, C. 3D-In vitro Effects of Compression and Time in Culture on Aggregate Modulus and on Gene Expression and Protein content of Collagen Type II in Murine Chondrocytes. Tissue Eng. Part A. , (2009).
  6. Butler, D. L., Goldstein, S. A., Guilak, F. Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. 122, 570-575 (2000).
  7. Goldring, M. B., Goldring, S. R. Osteoarthritis. J. Cell. Physiol. 213, 626-634 (2007).
  8. Zvaifler, N. J., Firestein, G. S. Cytokines in chronic inflammatory synovitis. Scand. J. Rheumatol. Suppl. 76, 203-210 (1988).
  9. Rhee, D. K., Marcelino, J., Baker, M. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J. Clin. Invest. 115, 622-631 (2005).
  10. Campo, G. M., Avenoso, A., Nastasi, G. Hyaluronan reduces inflammation in experimental arthritis by modulating TLR-2 and TLR-4 cartilage expression. Biochim. Biophys. Acta. , (2011).
  11. van de Lest, C. H., van den Hoogen, B. M., van Weeren, P. R. Loading-induced changes in synovial fluid affect cartilage metabolism. Biorheology. 37, 45-55 (2000).
  12. Saxne, T., Heinegard, D., Wollheim, F. A. Human arthritic synovial fluid influences proteoglycan biosynthesis and degradation in organ culture of bovine nasal cartilage. Coll. Relat. Res. 8, 233-247 (1988).
  13. Lee, D. A., Salih, V., Stockton, E. F., Stanton, J. S., Bentley, G. Effect of normal synovial fluid on the metabolism of articular chondrocytes in vitro. Clin. Orthop. Relat. Res. , 228-238 (1997).
  14. Schalkwijk, J., Joosten, L. A., van den Berg, W. B., van de Putte, L. B. Chondrocyte nonresponsiveness to insulin-like growth factor 1 in experimental arthritis. Arthritis Rheum. 32, 894-900 (1989).
  15. Schalkwijk, J., Joosten, L. A., van den Berg, W. B., van Wyk, J. J., van de Putte, L. B. Insulin-like growth factor stimulation of chondrocyte proteoglycan synthesis by human synovial fluid. Arthritis Rheum. 32, 66-71 (1989).
  16. Joosten, L. A., Schalkwijk, J., van den Berg, W. B., van de Putte, L. B. Chondrocyte unresponsiveness to insulin-like growth factor-1. A novel pathogenetic mechanisms for cartilage destruction in experimental arthritis. Agents Actions. 26, 193-195 (1989).
  17. Schuerwegh, A. J., Dombrecht, E. J., Stevens, W. J. Synovial fluid and peripheral blood immune complexes of patients with rheumatoid arthritis induce apoptosis in cytokine-activated chondrocytes. Rheumatol. Int. 27, 901-909 (2007).
  18. Hegewald, A. A., Ringe, J., Bartel, J. Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study. Tissue Cell. 36, 431-438 (2004).
  19. Xu, Q. R., Dong, Y. H., Chen, S. L., Bao, C. D., Du, H. Degeneration of normal articular cartilage induced by late phase osteoarthritic synovial fluid in beagle dogs. Tissue Cell. 41, 13-22 (2009).
  20. Kruger, J. P., Endres, M., Neumann, K., Haupl, T., Erggelet, C., Kaps, C. Chondrogenic differentiation of human subchondral progenitor cells is impaired by rheumatoid arthritis synovial fluid. J. Orthop. Res. 28, 819-827 (2010).
  21. Steinhagen, J., Bruns, J., Niggemeyer, O. Perfusion culture system: Synovial fibroblasts modulate articular chondrocyte matrix synthesis in vitro. Tissue Cell. 42, 151-157 (2010).
  22. Yang, K. G., Saris, D. B., Verbout, A. J., Creemers, L. B., Dhert, W. J. The effect of synovial fluid from injured knee joints on in vitro chondrogenesis. Tissue Eng. 12, 2957-2964 (2006).
  23. Skoog, V., Widenfalk, B., Ohlsen, L., Wasteson, A. The effect of growth factors and synovial fluid on chondrogenesis in perichondrium. Scand. J. Plast. Reconstr. Surg. Hand. Surg.. 24, 89-95 (1990).
  24. Nuver-Zwart, I., Schalkwijk, J., Joosten, L. A., van den Berg, W. B., van de Putte, L. B. Effects of synovial fluid and synovial fluid cells on chondrocyte metabolism in short term tissue culture. J. Rheumatol. 15, 210-216 (1988).
  25. Beekhuizen, M., Bastiaansen-Jenniskens, Y. M., Koevoet, W. Osteoarthritic synovial tissue inhibits proteoglycan production in human osteoarthritic cartilage; Establishment and characterisation of a long-term coculture. Arthritis Rheum. , (2011).
  26. Rodrigo, J. J., Steadman, J. R., Syftestad, G., Benton, H., Silliman, J. Effects of human knee synovial fluid on chondrogenesis in vitro. Am. J. Knee. Surg. 8, 124-129 (1995).
  27. van den Hoogen, B. M., van de Lest, C. H., van Weeren, P. R. Loading-induced changes in synovial fluid affect cartilage metabolism. Br. J. Rheumatol. 37, 671-676 (1998).
  28. Webb, G. R., Westacott, C. I., Elson, C. J. Osteoarthritic synovial fluid and synovium supernatants up-regulate tumor necrosis factor receptors on human articular chondrocytes. Osteoarthritis Cartilage. 6, 167-176 (1998).
  29. Kook, S. H., Son, Y. O., Lee, K. Y. Hypoxia affects positively the proliferation of bovine satellite cells and their myogenic differentiation through up-regulation of MyoD. Cell. Biol. Int. 32, 871-878 (2008).
  30. Knobloch, T. J., Madhavan, S., Nam, J., Agarwal, S., Agarwal, S. Regulation of chondrocytic gene expression by biomechanical signals. Crit. Rev. Eukaryot. Gene. Expr. 18, 139-150 (2008).
  31. Guo, J. F., Jourdian, G. W., MacCallum, D. K. Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect. Tissue. Res. 19, 277-297 (1989).
  32. Toegel, S., Huang, W., Piana, C. Selection of reliable reference genes for qPCR studies on chondroprotective action. BMC. Mol. Biol. 8, 13-13 (2007).
  33. Lin, Z., Fitzgerald, J. B., Xu, J. Gene expression profiles of human chondrocytes during passaged monolayer cultivation. J. Orthop. Res. 26, 1230-1237 (2008).
  34. Goessler, U. R., Bieback, K., Bugert, P. Human chondrocytes differentially express matrix modulators during in vitro expansion for tissue engineering. Int. J. Mol. Med. 16, 509-515 (2005).
  35. Anat, J. . 121, 107-118 (1976).
check_url/kr/3587?article_type=t

Play Video

Cite This Article
Brand, J. A., McAlindon, T. E., Zeng, L. A 3D System for Culturing Human Articular Chondrocytes in Synovial Fluid. J. Vis. Exp. (59), e3587, doi:10.3791/3587 (2012).

View Video