Summary

Kortlægning af molekylær diffusion i plasmamembranen ved Multiple-Target Tracing (MTT)

Published: May 27, 2012
doi:

Summary

Multipel-Target Sporingen er en hjemmelavet algoritme udviklet til sporing individuelt mærkede molekyler i plasmamembranen af ​​levende celler. Effektiv opdage, vurdere og sporing molekyler over tid ved høj densitet giver et brugervenligt, omfattende værktøj til at undersøge nanoskala membran dynamik.

Abstract

Vores mål er at opnå en omfattende beskrivelse af molekylære processer finder sted på cellemembraner i forskellige biologiske funktioner. Vi stræber efter at karakterisere den komplekse organisation og dynamikken i plasmamembranen på enkelt-molekyle niveau, ved at udvikle analytiske værktøjer dedikeret til enkelt-partikel Tracking (SPT) ved høj tæthed: Multiple-Target Tracing (MTT) 1. Enkelt molekyle videomicroscopy, giver millisekund og nanometrisk opløsning 1-11, tillader en detaljeret afbildning af membranen organisation 12-14 ved nøjagtig kortlægning deskriptorer såsom celle-receptorer lokalisering, mobilitet, indespærring eller interaktioner.

Vi fornyet SPT, både eksperimentelt og algoritmer. Eksperimentelle aspekter omfattede optimering opsætning og celle mærkning, med særlig vægt på at nå den højest mulige mærkning tæthed, for at skabe en dynamisk øjebliksbillede af molekylær dynamik ens det forekommer inde i membranen. Algoritmiske problemer pågældende hvert trin anvendes til at genopbygge baner: toppe detektion, estimering og gentilslutning, behandles af specifikke værktøjer fra billedanalyse 15,16. Implementering deflation efter afsløring giver redde toppe i første omgang skjult af tilstødende, stærkere toppe. Det skal bemærkes, direkte forbedre afsløring påvirker gentilslutning, ved at reducere huller i baner. Forestillinger er blevet evalueret ved brug Monte-Carlo simuleringer for forskellige mærkning tæthed og støj værdier, som typisk udgør de to store begrænsninger for parallelle målinger med høj spatiotemporal opløsning.

Den nanometrisk nøjagtighed 17 opnået for enkelte molekyler, enten ved hjælp af successive on / off photoswitching eller ikke-lineær optik, kan levere udtømmende observationer. Dette er grundlaget for Nanoscopy metoder 17, såsom STORM 18, PALM 19,20, RESOLFT 21 eller place 22,23, whiCH kan kræver ofte billeddannende faste prøver. Den centrale opgave er at afsløre og vurdering af diffraktion-begrænsede toppe stammer fra enkelt-molekyler. Derfor giver tilstrækkelige forudsætninger, såsom håndtering af et konstant positionsnøjagtighed i stedet for Brownsk bevægelse, er MTT ligefrem velegnet til nanoskopiske analyser. Endvidere kan MTT fundamentalt anvendes i enhver skala: ikke blot molekyler, men også for celler eller dyr, f.eks. Derfor MTT er en effektiv sporing algoritme, der finder anvendelse på molekylære og cellulære skalaer.

Protocol

I denne video, præsenterer vi en helt enkelt partikel sporing eksperiment, ved hjælp af kvante-prikker målrettet til en specifik membran receptor. Hovedmålet med dette eksperiment består i kræsne forskellige typer molekylær diffusion adfærd målt i plasmamembranen af ​​levende celler. Faktisk kan molekylære bevægelser, der opstår på membranen typisk afvige fra Brownsk diffusion ved at blive lineært rettet eller begrænset i nanodomains 26-29, f.eks. Vi stræber efter at samtidig efter så man…

Discussion

I enkelt-partikel tracking,, ved siden af ​​de celle og mikroskopi aspekter analysen udgør en væsentlig del af arbejdet. Dette omhandler algoritme, der anvendes til at udføre de tre hovedopgaver: afsløre, estimering og tilslutte toppe over hver frame. Men den deraf følgende aspekter af dette arbejde ligger i udarbejdelsen af ​​algoritmen selv, som måske skal tilpasses til en ny dedikeret undersøgelse, hovedsagelig i de sidste og ekstra skridt (såsom at dechifrere former for bevægelse, interaktion eller …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Vi takker medlemmer af vores team, især MC Blache for teknisk bistand samt M Irla og B Imhof, for deres støtte og frugtbare diskussioner. Tal for deflation og indespærring gengives udlånt af Nature Methods. Dette projekt er støttet af institutionelle tilskud fra CNRS, INSERM og Marseille Universitet, og ved hjælp af specifikke tilskud fra regionen Provence-Alpes-Côte-d'Azur, Institut National du Cancer, Agence Nationale de la Recherche (ANR-08-PCVI- 0034-02, ANR 2010 BLAN 1214 01) & Fondation pour la Recherche Medicale (Equipe labélisée FRM-2009). VR understøttes af et fællesskab fra Ligue Nationale Contre le Cancer.

Materials

Reagent Company Catalogue number Quantity
Cos-7 cell line ATCC CRL-1651 5,000 cells/well
HBSS without Ca2+ GIBCO 14175 1 ml
0.05% Trypsin EDTA GIBCO 25300 1 ml
8-well Lab-tek NUNC 155441 1
QDot-605 streptavidin Invitrogen Q10101MP 20 mM
Biotinylated Fab (for Fab synthesis, see reference 21)
Fab from mAb 108 ATCC HB-9764 200 μg
NHS-Biotin Thermo Scientific 21435 18.5 μg
Complete medium
DMEM GIBCO 41965 500 ml
Fetal Bovine Serum SIGMA F7524 50 ml
L-Glutamine GIBCO 25030 5 ml
HEPES GIBCO 15630 5 ml
Sodium Pyruvate GIBCO 11360 5 ml
Imaging medium
HBSS with Ca2+ GIBCO 14025 25 ml
HEPES GIBCO 15630 250 μl

 

Equipment Company Reference
Inverted microscope Nikon Eclipse TE2000U
Fluorescent lamp Nikon Intensilight C-HGFIE
1.3 NA 100x objective Nikon Plan Fluor 1.30
1.49 NA 100x objective Nikon APO TIRF 1.49
Camera Roper Scientific Cascade 512 B
Thermostated box Life Imaging Services The Box

Appendix: example Script of MTT supplementary analysis

function MTT_example(file_name)
%%% Basic examples showing how to recover MTT output results
%%% to plot each trace and to build the histogram
%%% of fluorescence intensities

if nargin<1 % no file_name provided?
    files = dir(‘*.stk’);
    if isempty(files), disp(‘no data in current dir’), return, end
    file_name = files(1).name; % default: first stk file
    disp([‘using’ file_name ‘by default’])
end

file_param = [file_name ‘_tab_param.dat’]; % output file

%% Load data
cd(‘output23′) % or (‘output22’), according to version used
% Disclaimer: version 2.2 only generates 7 parameters,
% an extra parameter, noise, was added in version 2.3

% To read all parameters at once, in a single table
% tab_param = fread_all_param(file_param);
% tab_i = tab_param(2:8:end, :); tab_j = …

% To read all parameters (except frame_number) in separate tables
% [tab_i,tab_j,tab_alpha,tab_radius,tab_offset,tab_blk,tab_noise] = fread_all_data_spt(file_param);

tab_i = fread_data_spt(file_param, 3); % index is 3 because trace number & frame number, non informative, are discarded!
tab_j= fread_data_spt(file_param, 4);
tab_alpha = fread_data_spt(file_param, 5);
tab_blk = fread_data_spt(file_param, 8);

%% Loop over traces
N_traces = size(tab_i,1);
% Tables are N_traces lines by N_frames colums

for itrc = 1:N_traces
    No_blk_index = tab_blk(itrc, :)>0; % non blinking steps only
     plot(tab_i(itrc, No_blk_index), tab_j(itrc, No_blk_index))
    xlabel(‘i (pixel)’), ylabel(‘j (pixel)’)
    title([‘trace # ‘ num2str(itrc)])
    disp(‘Please strike any key for next trace’), pause
end

%% Fluo histogram
N_datapoints = sum(tab_blk(:)>0); % non blinking steps only
hist(tab_alpha(tab_blk>0),2*sqrt(N_datapoints)) % using 2sqrt(N) bins
xlabel(‘intensity (a.u.)’), ylabel(‘occurrence’)
title(‘histogram of particles fluorescence intensity’)

References

  1. Serge, A., Bertaux, N., Rigneault, H., Marguet, D. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods. 5, 687-694 (2008).
  2. Schmidt, T., Schutz, G. J., Baumgartner, W., Gruber, H. J., Schindler, H. Imaging of single molecule diffusion. Proc. Natl. Acad. Sci. U S A. 93, 2926-2929 (1996).
  3. Lommerse, P. H. Single-molecule imaging of the H-ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys. J. 86, 609-616 (2004).
  4. Marguet, D., Lenne, P. F., Rigneault, H., He, H. T. Dynamics in the plasma membrane: how to combine fluidity and order. EMBO. J. 25, 3446-3457 (2006).
  5. Saxton, M. J., Jacobson, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373-399 (1997).
  6. Dahan, M. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science. 302, 442-445 (2003).
  7. Harms, G. S. Single-molecule imaging of l-type Ca(2+) channels in live cells. Biophys. J. 81, 2639-2646 (2001).
  8. Iino, R., Koyama, I., Kusumi, A. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 80, 2667-2677 (2001).
  9. Sako, Y., Minoghchi, S., Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2, 168-172 (2000).
  10. Schutz, G. J., Kada, G., Pastushenko, V. P., Schindler, H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. Embo. J. 19, 892-901 (2000).
  11. Seisenberger, G. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science. 294, 1929-1932 (2001).
  12. Jacobson, K., Sheets, E. D., Simson, R. Revisiting the fluid mosaic model of membranes. Science. 268, 1441-1442 (1995).
  13. Saffman, P. G., Delbruck, M. Brownian motion in biological membranes. Proc. Natl. Acad. Sci. U S A. 72, 3111-3113 (1975).
  14. Singer, S. J., Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science. 175, 720-731 (1972).
  15. Papoulis, A. . Probability, Random Variables and Stochastic Process 277. , (2001).
  16. Van Trees, H. L. . Detection, Estimation, and Modulation Theory, Wiley Inter-Science. , (1968).
  17. Moerner, W. E. Single-molecule mountains yield nanoscale cell images. Nat. Methods. 3, 781-782 (2006).
  18. Rust, M. J., Bates, M., Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods. 3, 793-795 (2006).
  19. Betzig, E. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 313, 1642-1645 (2006).
  20. Manley, S. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods. 5, 155-157 (2008).
  21. Andrew, S. M. Enzymatic digestion of monoclonal antibodies. Methods Mol. Med. 40, 325-331 (2000).
  22. Hell, S. W., Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780-782 (1994).
  23. Klar, T. A., Hell, S. W. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954-956 (1999).
  24. Meilhac, N., Guyader, L. L. e., Salome, L., Destainville, N. Detection of confinement and jumps in single-molecule membrane trajectories. Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys. 73, 011915 (2006).
  25. Saxton, M. J. Single-particle tracking: effects of corrals. Biophys. J. 69, 389-398 (1995).
  26. Serge, A., Fourgeaud, L., Hemar, A., Choquet, D. Receptor activation and homer differentially control the lateral mobility of metabotropic glutamate receptor 5 in the neuronal membrane. J. Neurosci. 22, 3910-3920 (2002).
  27. Simson, R., Sheets, E. D., Jacobson, K. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys. J. 69, 989-993 (1995).
  28. Jacobson, K., Dietrich, C. Looking at lipid rafts. Trends Cell Biol. 9, 87-91 (1999).
  29. Kusumi, A., Sako, Y., Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021-2040 (1993).
  30. Livneh, E. Large deletions in the cytoplasmic kinase domain of the epidermal growth factor receptor do not affect its laternal mobility. J. Cell Biol. 103, 327-331 (1986).
  31. Medintz, I. L., Uyeda, H. T., Goldman, E. R., Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and. 4, 435-446 (2005).
  32. Wu, X., Bruchez, M. P. Labeling cellular targets with semiconductor quantum dot conjugates. Methods Cell Biol. 75, 171-183 (2004).
  33. Mohammadi, M. Aggregation-induced activation of the epidermal growth factor receptor protein tyrosine kinase. 생화학. 32, 8742-8748 (1993).
  34. Howarth, M. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat. Methods. 5, 397-399 (2008).
  35. Bertaux, N., Marguet, D., Rigneault, H., Sergé, A. Multiple-target tracing (MTT) algorithm probes molecular dynamics at cell surface. Protocol Exchange. , (1038).
  36. Groc, L. Surface trafficking of neurotransmitter receptor: comparison between single-molecule/quantum dot strategies. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27, 12433-12437 (2007).
  37. Cui, B. One at a time, live tracking of NGF axonal transport using quantum dots. Proceedings of the National Academy of Sciences of the United States of America. 104, 13666-13671 (2007).
  38. He, H. T., Marguet, D. Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy. Annu. Rev. Phys. Chem. 62, 417-436 (2011).
  39. Cebecauer, M., Spitaler, M., Serge, A., Magee, A. I. Signalling complexes and clusters: functional advantages and methodological hurdles. J. Cell. Sci. 123, 309-320 (2010).
  40. Kao, H. P., Verkman, A. S. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys. J. 67, 1291-1300 (1994).
check_url/kr/3599?article_type=t

Play Video

Cite This Article
Rouger, V., Bertaux, N., Trombik, T., Mailfert, S., Billaudeau, C., Marguet, D., Sergé, A. Mapping Molecular Diffusion in the Plasma Membrane by Multiple-Target Tracing (MTT). J. Vis. Exp. (63), e3599, doi:10.3791/3599 (2012).

View Video