Summary

扩大目标,脐血细胞毒性T淋巴细胞,巨细胞病毒,EB病毒,腺病毒

Published: May 07, 2012
doi:

Summary

在这里,我们描述的第一个好生产质量管理规范(GMP)标准的方法从脐带血幼稚T细胞的来源主要是病毒特异性细胞毒性T淋巴细胞(CTL)。

Abstract

干细胞移植后的病毒感染是最常见的死亡原因,尤其是在脐带血(CB)移植(CBT),CB不包含相当数量的病毒有经验的T细胞可以保护收件人感染。1 –我们和其他人表明,病毒特异性CTL产生的血清学阳性的捐助者,并注入到收件人的安全和保护。5-8然而,直到最近,病毒特异性T细胞不能产生脐带血,可能是由于病毒特异性记忆T细胞的缺乏。

为了更好地模仿体内吸幼稚T细胞的条件,我们建立了一个方法,该方法使用CB来源的树突状细胞(DC)的腺病毒载体(Ad5f35pp65)含有的免疫CMV抗原病毒pp65转,因此驱动T细胞特异性对巨细胞病毒和腺病毒。在开始,我们利用这些马捕获区议会,以及CB来源的T细胞的细胞因子的存在下,IL-7,IL-12和IL-15。[10]在所述第二刺激我们使用EBV-转化的B细胞,或EBV-LCL,同时表达潜在的和裂解EB病毒抗原。 ad5f35pp65转导的EBV-LCL是用于刺激的T细胞中的IL-15的存在,在第二次刺激。后续的刺激使用Ad5f35pp65转导的EBV-LCL和IL-2。

从50×10 6 CB单核细胞中,我们能够产生向上的150×10 6病毒特异性T细胞,裂解抗原脉冲的目标和释放细胞因子响应于抗原刺激11将这些细胞在GMP兼容的方式制造,使用仅分馏脐带血单元分数的20%,并已被翻译供临床使用。

Protocol

1。单核细胞分离(0天) 插入秒杀到出口的20%部分的脐带血阴鲁尔适配器,连接注射器和清除血液中。解冻血液转移到20毫升温热在50ml离心管中的RPMI。用5毫升的RPMI冲洗脐血袋和转移到相同的离心管中。 离心细胞以400×g进行10分钟。吸出上清液。 在20毫升的温暖的RPMI重悬细胞。到在50ml离心管中的15毫升淋巴制剂层细胞。离心40分钟@ 400×克。 含有单核细胞的收获的接?…

Discussion

目的是在控制病毒感染后,CBT目前的战略是有效的,但他们都与显著的毒性,价格昂贵,并且不授予长期保护,对以后的感染。事实上,一些抗病毒药物的使用可能会限制病毒特异性T细胞,否则将保护的膨胀。14另一种选择是来自供体的病毒特异性T细胞的输注。我们和其他人表明,这种T细胞是安全,有效和符合成本效益的。15日至17日在这里,我们表明,这种方法也可以扩展…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了一个丹·邓肯的合作研究资助(CMB和EJS),美国国家心脏,肺,和血液研究所(US4HL081007),白血病和淋巴瘤协会临床研究学者奖(CMB),美国国家癌症研究所(RO1 CA06150816 EJS)。

Materials

Name of reagent Company Catalogue number
RPMI 1640 Invitrogen 21870-076
DC media CellGenix 20801-0500
EHAA (Click’s Medium) Irvine Scientific 9195
Human Serum Gemini Bio Products 100-110
Gas Permeable Cultureware18 Wilson-Wolf 80040S
IL-2 Chiron (TCH Pharmacy)  
IL-12 NCI/CTEP  
IL-15 CellGenix 1013-050
IL-7 R&D AFL207
IL-1beta R&D AFL201
IL-6 CellGenix 1004-050
GM-CSF TCH Pharmacy  
IL-4 R&D AFL204
TNF-alpha R&D AFL210
Ad5f35pp65 BCM CAGT Vector Production Facility  
Plasma transfer set with female luer adapter Charter Medical 89-550-66j
Lymphoprep Nycomed 1114550

References

  1. Kennedy-Nasser, A. A. Comparable outcome of alternative donor and matched sibling donor hematopoietic stem cell transplant for children with acute lymphoblastic leukemia in first or second remission using alemtuzumab in a myeloablative conditioning regimen. Biol. Blood Marrow Transplant. 14, 1245-1245 (2008).
  2. Hanley, P. J. Improving clinical outcomes using adoptively transferred immune cells from umbilical cord blood. Cytotherapy. 12, 713 (2010).
  3. Szabolcs, P., Cairo, M. S. Unrelated umbilical cord blood transplantation and immune reconstitution. Semin. Hematol. 47, 22 (2010).
  4. Canto, E., Rodriguez-Sanchez, J. L., Vidal, S. Distinctive response of naive lymphocytes from cord blood to primary activation via TCR. J. Leukoc. Biol. 74, 998-998 (2003).
  5. Leen, A. M. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat. Med. 12, 1160-1160 (2006).
  6. Riddell, S. R. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science. 257, 238 (1992).
  7. O’Reilly, R. J. Adoptive transfer of antigen-specific T-cells of donor type for immunotherapy of viral infections following allogeneic hematopoietic cell transplants. Immunol. Res. 38, 237-237 (2007).
  8. Peggs, K. S. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet. 362, 1375-1375 (2003).
  9. Sili, U. Large-scale expansion of dendritic cell-primed polyclonal human cytotoxic T-lymphocyte lines using lymphoblastoid cell lines for adoptive immunotherapy. J. Immunother. 26, 241 (2003).
  10. Bollard, C. M. Good manufacturing practice-grade cytotoxic T lymphocytes specific for latent membrane proteins (LMP)-1 and LMP2 for patients with Epstein-Barr virus-associated lymphoma. Cytotherapy. 13, 518 (2011).
  11. Hanley, P. J. Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood. 114, 1958 (1958).
  12. Hanley, P. J. Expansion of T cells targeting multiple antigens of cytomegalovirus, Epstein-Barr virus and adenovirus to provide broad antiviral specificity after stem cell transplantation. Cytotherapy. , (2011).
  13. Gerdemann, U. Generation of Multivirus-specific T Cells to Prevent/treat Viral Infections after Allogeneic Hematopoietic Stem Cell Transplant. J. Vis. Exp. (51), e2736 (2011).
  14. Mori, T., Kato, J. Cytomegalovirus infection/disease after hematopoietic stem cell transplantation. Int. J. Hematol. 91, 588 (2010).
  15. Einsele, H. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood. 99, 3916 (2002).
  16. Bao, L. Expansion of cytomegalovirus pp65 and IE-1 specific cytotoxic T lymphocytes for cytomegalovirus-specific immunotherapy following allogeneic stem cell transplantation. Biol. Blood Marrow Transplant. 14, 1156 (2008).
  17. Shpall, E. J., Bollard, C. M., Brunstein, C. Novel cord blood transplant therapies. Biol. Blood Marrow Transplant. 17, S39-S45 (2011).
  18. Vera, J. F. Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex. J. Immunother. 33, 305 (2010).
check_url/kr/3627?article_type=t

Play Video

Cite This Article
Hanley, P. J., Lam, S., Shpall, E. J., Bollard, C. M. Expanding Cytotoxic T Lymphocytes from Umbilical Cord Blood that Target Cytomegalovirus, Epstein-Barr Virus, and Adenovirus. J. Vis. Exp. (63), e3627, doi:10.3791/3627 (2012).

View Video