Summary

的的膀胱测压小老鼠:A膀胱Chemosensation研究的使用

Published: August 21, 2012
doi:

Summary

膀胱测压是一种有效的技术来测量小动物的膀胱功能<em在体内</em>。膀胱是连续输注速率控制,而通过膀胱内灌注导管用于排尿的尿道自由。这允许重复填充和排空的膀胱,记录膀胱内压和排尿量。

Abstract

<p class="jove_content">下尿路(LUT)的功能,作为一个动态的水库,是能够存储尿液和有效地排出,在方便的时候。然而,在存储尿液,膀胱废旧产品长时间暴露。通过作为紧障碍,上皮衬里的LUT,尿路上皮,避免了有害物质的再吸收。此外,有毒化学品伤害性刺激膀胱的神经支配,并开始排尿收缩,排出膀胱的内容。有趣的是,膀胱的敏感性,有毒化学品已被成功地应用于临床实践中,通过膀胱内灌注TRPV1受体激动剂辣椒素来治疗神经源性膀胱过度活动<sup> 1</sup>。这突出的观察膀胱化学感受器官的优势和进一步的临床研究提示。然而,道德问题,严重限制了执行的可能性,在人体所必需解开的分子基础的LUT临床药理学,侵入性测量。一种方法来克服这种限制是使用的几种动物模型<sup> 2</sup>。在这里,我们描述了在小鼠和大鼠膀胱内压,一种技术,使测量控制膀胱灌注膀胱内压力的条件下实现的。</p><p class="jove_content"剖腹手术后,被植入的导管在膀胱的圆顶和隧道的肩胛间区域皮下。然后膀胱可填充以控制的速率,而尿道自由为排尿。在灌装和排尿的重复周期的期间,膀胱内的压力,可以测量通过植入的导管。因此,压力的变化可以被量化,并进行了分析。此外,空隙体积的同时测量从非排尿收缩允许区分排尿收缩<sup> 3</sup>。</p><p class="jove_content"更重要的是,由于膀胱测量的排尿控制啮齿动物和人类之间的差异,在这些动物中,只有有限的平移值<sup></sup>。然而,他们是在在临床前实验设置的膀胱病理生理学和药理学的研究。使用这种技术的最新研究发现新的分子的球员在机械和化学感官性状的膀胱中的关键作用。</p>

Protocol

1。实验动物动物(小鼠,大鼠)被安置在一个专门的动物设施,12个小时光暗周期和自由采食获得水和食物颗粒标准。这两种动物的年龄和性别,是重要的参数,根据需要,应该标准化。我们通常进行膀胱内压在10 – 12周龄雌性动物5,6。 所有的动物进行了实验,根据与欧洲联盟共同体理事会准则和当地的伦理委员会的批准。 2。麻醉?…

Discussion

这里介绍的允许性膀胱测压技术在动物模型体内测量膀胱功能执行。老鼠可能是最常用的动物模型。的小鼠更难以处理,但提供的优势,利用基因操纵的动物。由于技术难度使用意识的小鼠,这往往是非常活跃的松动植入导管在腹腔内的压力,可能会影响膀胱内压力的变化导致的,我们建议在全膀胱压力,让他们用氨基甲酸乙酯麻醉协议。当然,有镇静小鼠的好处,对麻醉药的影响进行权?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由比利时联邦政府(IUAP P6/28),研究基金会,富兰德(FWO)(G.0565.07和G.0686.09),安斯泰来欧洲基金会奖2009年和鲁汶大学研究理事会的拨款,支持(,EF/95/010 GOA 2009/07和PFV/10/006)。 PU,我们正在研究基金会龙龙(FWO)的博士后研究员。 MB是居里夫人研究员。 DDR的基本临床研究员的FWO。

Materials

Name of the reagent Commercial name, company, Catalogue number Comments
urethane Urethane, Sigma-Aldrich 315419 group 2B carcinogen
isoflurane Isoba, Schering-Plough Animal Health    
polyethylene catheter Intramedic Polyethylene tubing PE50, Becton Dickinson 427411  
surgical microscope Op-Mi 6, Carl Zeiss Op-Mi 6  
purse-string suture Prolene 6/0, Ethicon 8610H  
fascia and skin suture Ethilon 4/0 or 5/0, Ethicon 662G or 661G  
postoperative analgesics Temgesic, Schering-Plough Animal Health   dosage for rats: 0.05 mg/kg
amplifier 78534c monitor, Hewlett Packard    
analytical balances and balance data acquisition software FZ 300i, A&D FZ-300i  
infusion pumps pump 33, Harvard apparatus HA33  
cystometry recording system Dataq instruments, DI-730 series and Windaq/Lite DI-730-USB Windaq/Lite  
temperature registration Fluke 52 KJ thermometer 52 KJ  
pressure transducers Edwards Lifesciences, pressure monitoring set T322247A  

References

  1. Everaerts, W., Gevaert, T., Nilius, B., De Ridder, D. On the origin of bladder sensing: Tr(i)ps in urology. Neurourol. Urodyn. 27, 264-2673 (2008).
  2. Fry, C. H. Animal models and their use in understanding lower urinary tract dysfunction. Neurourol. Urodyn. 29, 603-608 (2010).
  3. Gevaert, T. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J. Clin. Invest. 117, 3453-3462 (2007).
  4. Andersson, K. E., Soler, R., Fullhase, C. Rodent models for urodynamic investigation. Neurourol. Urodyn. 30, 636-646 (2011).
  5. Everaerts, W. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc. Natl. Acad. Sci. U.S.A. 107, 19084-19089 (2010).
  6. Everaerts, W. The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil. Curr. Biol. 21, 316-321 (2011).
  7. Yoshiyama, M., Roppolo, J. R., Thor, K. B., de Groat, W. C. Effects of LY274614, a competitive NMDA receptor antagonist, on the micturition reflex in the urethane-anaesthetized rat. Br. J. Pharmacol. 110, 77-86 (1993).
  8. Yoshiyama, M., Roppolo, J. R., de Groat, W. C. Effects of MK-801 on the micturition reflex in the rat–possible sites of action. J. Pharmacol. Exp. Ther. 265, 844-850 (1993).
  9. Boudes, M. Functional Characterization of a Chronic Cyclophosphamide-Induced Overactive Bladder Model in mice. Neurourol. Urodyn. , (2011).
  10. Yoshiyama, M. Sex-related differences in activity of lower urinary tract in response to intravesical acid irritation in decerebrate unanesthetized mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R954-R960 (2008).
  11. McMahon, S. B., Abel, C. A model for the study of visceral pain states: chronic inflammation of the chronic decerebrate rat urinary bladder by irritant chemicals. Pain. 28, 109-127 (1987).
  12. Du, S., Araki, I., Yoshiyama, M., Nomura, T., Takeda, M. Transient receptor potential channel A1 involved in sensory transduction of rat urinary bladder through C-fiber pathway. Urology. 70, 826-831 (2007).
  13. Streng, T., Santti, R., Talo, A. Similarities and differences in female and male rat voiding. Neurourol. Urodyn. 21, 136-141 (2002).
  14. Igawa, Y. Cystometric findings in mice lacking muscarinic M2 or M3 receptors. J. Urol. 172, 2460-2464 (2004).
  15. Schroder, A., Newgreen, D., Andersson, K. E. Detrusor responses to prostaglandin E2 and bladder outlet obstruction in wild-type and Ep1 receptor knockout mice. J. Urol. 172, 1166-1170 (2004).
  16. Chen, Q. Function of the lower urinary tract in mice lacking alpha1d-adrenoceptor. J. Urol. 174, 370-374 (2005).
  17. May, V., Vizzard, M. A. Bladder dysfunction and altered somatic sensitivity in PACAP-/- mice. J. Urol. 183, 772-779 (2010).
  18. Thorneloe, K. S., Meredith, A. L., Knorn, A. M., Aldrich, R. W., Nelson, M. T. Urodynamic properties and neurotransmitter dependence of urinary bladder contractility in the BK channel deletion model of overactive bladder. Am. J. Physiol. Renal. Physiol. 289, 604-610 (2005).
check_url/kr/3869?article_type=t

Play Video

Cite This Article
Uvin, P., Everaerts, W., Pinto, S., Alpízar, Y. A., Boudes, M., Gevaert, T., Voets, T., Nilius, B., Talavera, K., De Ridder, D. The Use of Cystometry in Small Rodents: A Study of Bladder Chemosensation. J. Vis. Exp. (66), e3869, doi:10.3791/3869 (2012).

View Video