Summary

एक तेज़, उच्च संकल्प, एमटीपीए GFP-आधारित Mitochondrial फ्यूजन में समानांतर Confocal माइक्रोस्कोपी का उपयोग एकाधिक कक्षों की काइनेटिक डेटा हासिल परख

Published: July 20, 2012
doi:

Summary

Mitochondrial संलयन मैट्रिक्स – लक्षित समय के साथ mitochondrial नेटवर्क के भर photoconverted GFP के संतुलन पर नज़र रखने के द्वारा मापा गया था. इस प्रकार अब तक, केवल एक कक्ष एक समय में एक घंटे तक गतिज विश्लेषण किया जा सकता है. हम एक तरीका है कि एक साथ एकाधिक कक्षों के उपाय है, जिससे डेटा संग्रह प्रक्रिया तेजी से प्रस्तुत करते हैं.

Abstract

Mitochondrial fusion plays an essential role in mitochondrial calcium homeostasis, bioenergetics, autophagy and quality control. Fusion is quantified in living cells by photo-conversion of matrix targeted photoactivatable GFP (mtPAGFP) in a subset of mitochondria. The rate at which the photoconverted molecules equilibrate across the entire mitochondrial population is used as a measure of fusion activity. Thus far measurements were performed using a single cell time lapse approach, quantifying the equilibration in one cell over an hour. Here, we scale up and automate a previously published live cell method based on using mtPAGFP and a low concentration of TMRE (15 nm). This method involves photoactivating a small portion of the mitochondrial network, collecting highly resolved stacks of confocal sections every 15 min for 1 hour, and quantifying the change in signal intensity. Depending on several factors such as ease of finding PAGFP expressing cells, and the signal of the photoactivated regions, it is possible to collect around 10 cells within the 15 min intervals. This provides a significant improvement in the time efficiency of this assay while maintaining the highly resolved subcellular quantification as well as the kinetic parameters necessary to capture the detail of mitochondrial behavior in its native cytoarchitectural environment.

Mitochondrial dynamics play a role in many cellular processes including respiration, calcium regulation, and apoptosis1,2,3,13. The structure of the mitochondrial network affects the function of mitochondria, and the way they interact with the rest of the cell. Undergoing constant division and fusion, mitochondrial networks attain various shapes ranging from highly fused networks, to being more fragmented. Interestingly, Alzheimer’s disease, Parkinson’s disease, Charcot Marie Tooth 2A, and dominant optic atrophy have been correlated with altered mitochondrial morphology, namely fragmented networks4,10,13. Often times, upon fragmentation, mitochondria become depolarized, and upon accumulation this leads to impaired cell function18. Mitochondrial fission has been shown to signal a cell to progress toward apoptosis. It can also provide a mechanism by which to separate depolarized and inactive mitochondria to keep the bulk of the network robust14. Fusion of mitochondria, on the other hand, leads to sharing of matrix proteins, solutes, mtDNA and the electrochemical gradient, and also seems to prevent progression to apoptosis9. How fission and fusion of mitochondria affects cell homeostasis and ultimately the functioning of the organism needs further understanding, and therefore the continuous development and optimization of how to gather information on these phenomena is necessary.

Existing mitochondrial fusion assays have revealed various insights into mitochondrial physiology, each having its own advantages. The hybrid PEG fusion assay7, mixes two populations of differently labeled cells (mtRFP and mtYFP), and analyzes the amount of mixing and colocalization of fluorophores in fused, multinucleated, cells. Although this method has yielded valuable information, not all cell types can fuse, and the conditions under which fusion is stimulated involves the use of toxic drugs that likely affect the normal fusion process. More recently, a cell free technique has been devised, using isolated mitochondria to observe fusion events based on a luciferase assay1,5. Two human cell lines are targeted with either the amino or a carboxy terminal part of Renilla luciferase along with a leucine zipper to ensure dimerization upon mixing. Mitochondria are isolated from each cell line, and fused. The fusion reaction can occur without the cytosol under physiological conditions in the presence of energy, appropriate temperature and inner mitochondrial membrane potential. Interestingly, the cytosol was found to modulate the extent of fusion, demonstrating that cell signaling regulates the fusion process 4,5. This assay will be very useful for high throughput screening to identify components of the fusion machinery and also pharmacological compounds that may affect mitochondrial dynamics. However, more detailed whole cell mitochondrial assays will be needed to complement this in vitro assay to observe these events within a cellular environment.

A technique for monitoring whole-cell mitochondrial dynamics has been in use for some time and is based on a mitochondrially-targeted photoactivatable GFP (mtPAGFP)6,11. Upon expression of the mtPAGFP, a small portion of the mitochondrial network is photoactivated (10-20%), and the spread of the signal to the rest of the mitochondrial network is recorded every 15 minutes for 1 hour using time lapse confocal imaging. Each fusion event leads to a dilution of signal intensity, enabling quantification of the fusion rate. Although fusion and fission are continuously occurring in cells, this technique only monitors fusion as fission does not lead to a dilution of the PAGFP signal6. Co-labeling with low levels of TMRE (7-15 nM in INS1 cells) allows quantification of the membrane potential of mitochondria. When mitochondria are hyperpolarized they uptake more TMRE, and when they depolarize they lose the TMRE dye. Mitochondria that depolarize no longer have a sufficient membrane potential and tend not to fuse as efficiently if at all. Therefore, active fusing mitochondria can be tracked with these low levels of TMRE9,15. Accumulation of depolarized mitochondria that lack a TMRE signal may be a sign of phototoxicity or cell death. Higher concentrations of TMRE render mitochondria very sensitive to laser light, and therefore great care must be taken to avoid overlabeling with TMRE. If the effect of depolarization of mitochondria is the topic of interest, a technique using slightly higher levels of TMRE and more intense laser light can be used to depolarize mitochondria in a controlled fashion (Mitra and Lippincott-Schwartz, 2010). To ensure that toxicity due to TMRE is not an issue, we suggest exposing loaded cells (3-15 nM TMRE) to the imaging parameters that will be used in the assay (perhaps 7 stacks of 6 optical sections in a row), and assessing cell health after 2 hours. If the mitochondria appear too fragmented and cells are dying, other mitochondrial markers, such as dsRED or Mitotracker red could be used instead of TMRE.

The mtPAGFP method has revealed details about mitochondrial network behavior that could not be visualized using other methods. For example, we now know that mitochondrial fusion can be full or transient, where matrix content can mix without changing the overall network morphology. Additionally, we know that the probability of fusion is independent of contact duration and organelle dimension, is influenced by organelle motility, membrane potential and history of previous fusion activity8,15,16,17.

In this manuscript, we describe a methodology for scaling up the previously published protocol using mtPAGFP and 15nM TMRE8 in order to examine multiple cells at a time and improve the time efficiency of data collection without sacrificing the subcellular resolution. This has been made possible by the use of an automated microscope stage, and programmable image acquisition software. Zen software from Zeiss allows the user to mark and track several designated cells expressing mtPAGFP. Each of these cells can be photoactivated in a particular region of interest, and stacks of confocal slices can be monitored for mtPAGFP signal as well as TMRE at specified intervals. Other confocal systems could be used to perform this protocol provided there is an automated stage that is programmable, an incubator with CO2, and a means by which to photoactivate the PAGFP; either a multiphoton laser, or a 405 nm diode laser.

Protocol

1. छवि प्लेट तैयार संस्कृति RPMI मीडिया में INS1 कोशिकाओं के 10% मानक भ्रूण गोजातीय सीरम, 1% पेनिसिलिन स्ट्रेप्टोमाइसिन, 2 मिमी एल glutamine, 50 माइक्रोन 2 – mercaptoethanol का 5 मिमी तीन NaHCO, 2 मिमी HEPES, 2 मिमी Pyruvic एसिड, और 11 मिमी ग्लूकोज युक्त 80% संगम. 0.05% trypsin और उन्हें पाली-D-lysine लेपित coverslip तली इमेजिंग प्लेट (30-40% संगम) पर थाली के साथ INS1 सेल संस्कृतियों Trypsinize के. अनुमति देने के लिए प्लेटें 60-80% संगम (~ 2 दिन) तक पहुँचने के लिए और mitochondrial मैट्रिक्स लक्षित जोड़ने (COXVIII) के लिए adenoviral फिलीस्तीनी अथॉरिटी GFP 24 घंटे (MOI = 5). विनिमय मीडिया और कोशिकाओं इमेजिंग से पहले एक और 2 दिन के लिए विकसित करने के लिए अनुमति देते हैं. इमेजिंग के दिन पर, 7-15 एनएम TMRE इमेजिंग प्लेट को जोड़ने के लिए, और कम से कम 45 मिनट के लिए संतुलित करना. इनक्यूबेटर (चरण शीर्ष इनक्यूबेटर यहां इस्तेमाल किया गया है) पर इस बार बारी के दौरान और माइक्रोस्कोप ° के लिए सी के बारे में 1 घंटे 37 संतुलित करना करने के लिए अनुमति देते हैं. 5% सीओ 2 पर बारी. </ली> 2. Zeiss एल एस एम 710 confocal सूक्ष्मदर्शी के लिए इमेजिंग पैरामीटर बाद खुर्दबीन equilibrated है, अधिग्रहण टैब के अंतर्गत, "शो पुस्तिका उपकरण" पर क्लिक करें खोलने इमेजिंग पैनल सेट, और "चैनल मोड" का चयन और ट्रैक स्विच हर फ्रेम ". प्रकाश पथ पैनल में, एल एस एम और चैनल मोड का चयन. नमूना आइकन से ऊपर की ओर, "पीछे" एमबीएस, चयन 690 488 + अवसर और. पैनल के तल में, चुनने के उज्ज्वल क्षेत्र या डीआईसी चैनल के दृश्य को सक्षम करने के लिए "टी पी एम टी". 490-540 एनएम और TMRE डाई के लिए 580-700 एनएम GFP डाई के लिए सीमा की स्थापना के द्वारा प्रकाश पथ मापदंडों का समायोजन समाप्त. अधिग्रहण मोड में, 512 का उपयोग करें × 512 पिक्सेल स्कैन क्षेत्र, औसत 4x और एक कारक ज़ूम (जो आप अंशांकन प्रयोजनों के लिए लगातार रखने के लिए चाहते हो सकता है) का चयन करें. 3. इमेजिंग मानकों के अनुकूलन योजना APOCHROMAT 100x का उपयोग करना (1.4 एनए) उद्देश्य लेंस, एफ ओ सीहमें अपनी कोशिकाओं पर हलोजन प्रकाश, phototoxicity से mitochondria की रक्षा नहीं फ्लोरोसेंट रोशनी के साथ. PA – GFP ज़्यादा से ज़्यादा खुला pinhole का उपयोग कोशिकाओं को व्यक्त करने और कोशिकाओं है कि उज्ज्वल हरा कर रहे हैं खोजने के लिए स्कैनिंग के लिए स्क्रीन. 2 फोटॉन लेजर फिलीस्तीनी अथॉरिटी GFP को सक्रिय और इमेजिंग सुनिश्चित करना है कि संकेत डिटेक्टर तर नहीं करता है पैरामीटर अनुकूलन की जरूरत के कम शक्ति का पता लगाएं. जाँच करें कि पीए – GFP संकेत कुछ z-श्रृंखला के लिए TMRE संकेत के साथ colocalizes. TMRE संकेत की हानि के mitochondrial विध्रुवण या phototoxicity इंगित करता है, और कोशिकाओं का प्रदर्शन इन विशेषताओं के विश्लेषण के लिए नहीं किया जाना चाहिए. PA-GFP व्यक्त सेल का पता लगाएं और ज़ूम कारक निर्दिष्ट. Z-श्रृंखला रेंज सेट करने के लिए 6 स्लाइसें (इस श्रेणी के लिए सभी 10 कोशिकाओं को संतुष्ट की जरूरत है जब तक एक विशिष्ट z फोकस प्रत्येक स्थिति में सेट कर दिया जाता है) जमा करने के लिए. प्रत्येक सेल (1 सेल, सेल आदि 2) के लिए इमेजिंग विधि सहेजें. 4. स्वचालित समायोजित करेंकार्यक्रम की घ भाग और 10 प्रकोष्ठों आप 1 घंटे Mitochondrial फ्यूजन परख के लिए का पालन करेंगे नामित Multitime विंडो के बाईं पैनल पर, "बचत" पैनल का चयन करें, और निर्दिष्ट स्थान जहां फ़ाइलों को सहेज लिया जाएगा. "अधिग्रहण" पैनल में, अधिग्रहण विधि 1 स्कैन विन्यास में सेल के लिए बचाया लोड और जेड ढेर बॉक्स की जाँच करें. यह भी चुन सकते Z z ढेर के बीच चिह्नित. "ब्लॉक" पैनल में, प्रत्येक स्थान पर एक ब्लॉक का चयन करें ". प्रत्येक मापा जा अंतराल के लिए ऐड ब्लॉक "पर क्लिक करें. "समय" पैनल में, "पहले स्थान पर ही ब्लॉक से पहले इंतजार अंतराल अंतराल प्रतीक्षा" और प्रकार में "0" का चयन करें. 2-4 ब्लाकों इस खंड में 15 मिनट का होगा. स्थान पैनल में, चुनें "फ़ोकस स्थानों के बीच की स्थिति लोड और लोड config के स्कैन जब या 'अगले नियंत्रण रेखा क्लिक किया' नियंत्रण रेखा के लिए कदम के तहत" सब स्पष्ट संपादित करें स्थानों की सूची "चुनें" "और फिर चुनें" एकाधिक स्थानों चरण मोटर ". Undएर "ब्लीच" पैनल "ब्लीच" बॉक्स क्लिक करें, और डाउन मेनू खींच "संरचना में विन्यास फाइल नामित, के रूप में मुख्य सॉफ्टवेयर की खिड़की में नामित. फिर, "विरंजन" विंडो में, उपयुक्त photoactivation के विधि बचाने. क्षेत्रों के पैनल में इस विशेष सेल के लिए लागत पर लाभ का चयन, और multitime चुनने खिड़की आरओआई सूची में जोड़ने के वर्तमान क्षेत्र से इस लागत पर लाभ को जोड़ने. यकीन है कि के आरओआई "में एक ही स्थान का चयन डाउन मेनू खींच रहो. के लिए समय ठीक से काम करने के लिए और प्रत्येक कक्ष के लिए एक 15 मिनट के अंतराल है, दो तरीकों को बचाया जा जरूरत है. ब्लॉकों की सूची में, पहले एक "वास्तविक" photoactivation के विन्यास है, और बाकी एक "नकली" विन्यास है कि दो photon लेजर का उपयोग नहीं करता होगा. पहले खंड भी केवल ब्लॉक कि एक देरी नहीं है (= 0 BKIntv) हो जाएगा. इसलिए, एक आधारभूत स्कैन, photoactivation के स्कैन के बाद विधि के साथ शुरू होता है. ब्लॉक के बाकी 900 सेकंड BkIntv है, औरहर समय बिंदु पर वहाँ बस के रूप में समय 0 सेकंड में दो स्कैन, समय स्थिरता बनाए रखने के हैं. 10 के लिए समय पर पीछा किया जा कोशिकाओं में से प्रत्येक के लिए, इस अनुक्रम प्रदर्शन: व्यक्त PAGFP अपनी इमेजिंग विधि सेल को बचाने के स्थान चरण स्थिति पैनल के निशान, इमेजिंग विधि निर्दिष्ट मुख्य आरओआई पैनल ब्याज की एक क्षेत्र का चयन photoactivated ब्लीच विशिष्ट लागत पर लाभ पैनल को बचाने के लिए और यह भी आरओआई बॉक्स में लोड: लागत पर लाभ को मिटा और 1 के लिए स्कैन ज़ूम रीसेट अगले कक्ष का पता लगाएं और ज़ूम सेट अगले 9 कोशिकाओं के लिए प्रक्रिया को दोहराएँ जाँच करें कि प्रत्येक चरण स्थान और सभी ब्लाकों उपयुक्त इमेजिंग (स्कैन विन्यास) विधि जुड़े है. यह भी सुनिश्चित करें कि प्रत्येक स्थान पर पहले खंड उपयुक्त photoactivation के विधि संगत है जबकि बाकी एक "नकली" विधि होते. अंत में, चुनें "चलाने". 5. सिग्नल पीए GFP तीव्रता का विश्लेषण <lमैं कोशिकाओं में जो संकेत photoactivatable – GFP लाल TMRE संकेत के साथ colocalizes PAGFP छवियाँ (यहाँ हम Metamorph उपयोग) में पृष्ठभूमि घटाना. फिर उत्कृष्टता प्राप्त करने के लिए डेटा निर्यात और z-ढेर के लिए हर समय बिंदु पर औसत तीव्रता गणना के. ऑप्टिकल वर्गों है कि कोई संकेत नहीं है त्यागें. मूल संकेत के photoactivated प्रतिशत की गणना के द्वारा प्रत्येक Z-ढेर में संकेत कमजोर पड़ने उपाय. प्रत्येक डेटा बिंदु स्कैन और दर्ज की गई दो बार, हर समय बिंदु के लिए डुप्लिकेट Z-ढेर जानकारी में जिसके परिणामस्वरूप. जाँच करें कि Z-ढेर मान सहमत हूँ. यदि नहीं, यह एक समस्या (जैसे ध्यान केंद्रित, सेल आंदोलन) का संकेत है. 6. प्रतिनिधि परिणाम जब एक संलयन घटना एक सक्रिय और गैर – सक्रिय फिलीस्तीनी अथॉरिटी GFP mitochondrion के बीच होता है, mitochondrial मैट्रिक्स के भीतर PAGFP गैर लेबल मैट्रिक्स के साथ घोला जा सकता है और एक बड़े क्षेत्र पर पतला हो जाता है, संकेत कमतीव्रता (चित्र 1 ए). कक्ष में INS1, संकेत तीव्रता में एक महत्वपूर्ण कमी हर 15 मिनट में होता है, जब तक mitochondrial संलयन के संतुलन पर पहुँच गया है (लगभग 1 घंटा). ध्यान दें कि चित्रा 1 बी में सेल पीए – GFP और TMRE के संकेत के लगभग पूरा colocalization के दर्शाती है. इन assays में TMRE के एक बहुत कम एकाग्रता (15 एनएम) मदद PAGFP के photoactivation के लक्षित है, और भी सेल स्वास्थ्य पर नजर रखने के लिए प्रयोग किया जाता है. Depolarized mitochondria के एक बहुतायत के साथ कोशिकाओं PAGFP और TMRE अधूरा colocalization और विश्लेषण नहीं किया जाना चाहिए क्योंकि यह या तो phototoxicity, या एक मर राज्य में कोशिकाओं को इंगित करता है. mitochondrial संलयन के लिए संतुलन समय आमतौर पर INS1 कोशिकाओं में 1 घंटे के है, जब ~ mitochondrial मात्रा का 15% सक्रिय है. कभी कभी, यहाँ तक कि अगर एक छोटे से क्षेत्र प्रबुद्ध है, mitochondria की सबसे कारण अत्यधिक नेटवर्क जा रहा है, जो मामले में आगे संलयन का पता लगाने के लिए मुश्किल है photoactivated हो. अन्य प्रकार सेल विभिन्न संतुलन बार प्रदर्शन और कम अंतराल पर और एक लंबी अवधि में परीक्षण किया जाना चाहिए mitochondrial गतिशीलता विशेषताएँ सकता है. Mitochondrial संलयन को बाधित करने के लिए, कोशिकाओं एक lipotoxic पर्यावरण के भीतर रखा जा सकता है. यह पहले से प्रदर्शन किया गया है कि 0.4 मिमी टुकड़े के mitochondria Palmitate, और mitochondrial 9 संलयन रोकता है. चित्रा 2 है, जहां के mitochondria खंडित कर रहे हैं में इस प्रभाव देखा जा सकता है, लेकिन mtPAGFP का संकेत तीव्रता के रूप में सामान्य परिस्थितियों (चित्रा 1) के तहत के रूप में ज्यादा परिवर्तन नहीं करता है. इसलिए, पीए – GFP संकेत के कमजोर पड़ने के विखंडन बजाय mitochondrial संलयन के कारण होने की संभावना है. अन्य कोशिकाओं के प्रकार में, हम दूसरे को जानते करने के लिए mitochondrial विखंडन पैदा OPA1 है जो mitochondrial 14 संलयन के लिए आवश्यक है मुंह बंद करने जैसे तरीके का उपयोग कर सुझाव देते हैं. आकृति 1. </stroएनजी> PA-GFP photoactivation के बाद संकेत के एक mitochondrial संलयन परख के दौरान विशिष्ट कमजोर पड़ने फिलीस्तीनी अथॉरिटी GFP ए मंदक उत्तरोत्तर mitochondrial संलयन प्रोटीन की एक बढ़ती क्षेत्र पर कमजोर पड़ने के लिए अग्रणी के रूप में इन अनुमानित छवियों में देखा जा सकता है घटनाओं की वजह से हो जाता है के 6 ऑप्टिकल वर्गों हर 15 मिनट के मात्रा. फिलीस्तीनी अथॉरिटी GFP साथ बी TMRE से पता चलता है कि mitochondria और नहीं depolarized सक्रिय हैं. बड़ा आंकड़ा देखने के लिए यहाँ क्लिक करें . चित्रा 2 Mitochondrial. संलयन 0.4 मिमी Palmitate साथ हिचकते फिलीस्तीनी अथॉरिटी GFP के कमजोर पड़ने घट जाती है 6 ऑप्टिकल कम समय के साथ अपरिवर्तनीय संकेत तीव्रता के साथ mitochondria के दिखा वर्गों के अनुमान ए. GFP-TMRE साथ फिलीस्तीनी अथॉरिटी बी Colocalization से पता चलता है नहीं कर रहे हैं कि mitochondria डेpolarized है. बड़ा आंकड़ा देखने के लिए यहाँ क्लिक करें .

Discussion

यह विधि एक समय में 10 के आसपास कोशिकाओं की इमेजिंग के लिए अनुमति देता है, अगर अधिग्रहण photoactivation के बाद हर 15 मिनट होता है. कक्षों की सही संख्या पर निर्भर करता है कि कैसे जल्दी से एक को खोजने और संस्कृति पकवान के भीतर mtPAGFP व्यक्त कोशिकाओं, और कैसे जल्दी से एक सॉफ्टवेयर के सभी मानकों सेट कर सकते हैं को चिह्नित करने में सक्षम है. बनाने स्वचालन सुचारू रूप से चलाने कोशिकाओं की एक परत भी क्योंकि नामित Z-ढेर हाशिये सभी कक्षों के लिए लागू होगी किया जाना चाहिए.

आकार इस प्रारंभिक photoactivation के क्षेत्र के संतुलन को नियंत्रित करेंगे. Mitochondrial संलयन मापने के लिए सक्षम होना करने के लिए, यह महत्वपूर्ण है करने के लिए नेटवर्क का केवल 10-20% photoactivate, ऐसी है कि नेटवर्क के आराम करने के लिए संकेत के प्रसार को समय पर नजर रखी जा सकती है. यदि नेटवर्क की भी बहुत photoactivated है, यह संभव है कि पूरा संलयन भी जल्दी हो जाएगा, और घटना पर कब्जा कर लिया नहीं किया जाएगा.

चरम देखभाल के लिए लिया जाना चाहिएदो photon लेजर लेजर शक्ति के रूप में के रूप में अच्छी तरह से TMRE phototoxicity जो mitochondrial विध्रुवण की ओर जाता है से बचने की एकाग्रता समायोजित. यह सुनिश्चित करना कि mtPAGFP संकेत TMRE संकेत के साथ colocalizes की phototoxicity और सामान्य सेल 8,15 स्वास्थ्य का आकलन करने में मदद कर सकते हैं. Epifluoerescent प्रकाश के साथ रोशनी से बचा जाना चाहिए. जबकि mtPAGFP व्यक्त कोशिकाओं के लिए खोज, pinhole ज़्यादा से ज़्यादा खुला होना चाहिए, जबकि एक कम बिजली की 488nm उत्तेजना के साथ स्कैनिंग. दो photon लेजर शक्ति का समायोजन करने के लिए फिलीस्तीनी अथॉरिटी GFP 1 घंटे से अधिक समय संकेत को मापने के लिए, लेकिन नहीं oversaturate कक्षों की किसी भी मुश्किल हो आठ कर सकते हैं पर्याप्त photoactivate. बहरहाल, समय के इस अनुकूलन कदम में खर्च किया जाना चाहिए क्योंकि एक बार स्वचालित कार्यक्रम शुरू कर दिया है, यह इसे रोकने के लिए, अधिक कक्षों का चयन करें, और फिर से शुरू करने के लिए कठिन है.

गुणवत्ता नियंत्रण के लिए एक अंतर हस्तक्षेप विपरीत (डीआईसी) के अधिग्रहण छवि (या प्रेषित प्रकाश) कोशिकाओं पर ध्यान केंद्रित करने की निगरानी बहुत हो सकता हैऔर भी स्कैनिंग के दौरान विसर्जन के तेल में गठन बुलबुले का पता लगाने के लिए एक अच्छा तरीका उपयोगी, इस मंच के आंदोलनों से कभी कभी होता है.

हालांकि इस mtPAGFP पद्धति का उपयोग करके photoactivated उन है कि लेबल नहीं हैं को mitochondria से mitochondrial मैट्रिक्स प्रोटीन की यूनिडायरेक्शनल आंदोलन पर डेटा इकट्ठा, यह अन्य प्रक्रियाओं का अध्ययन करने के लिए इस तकनीक का उपयोग करने के लिए बोधगम्य है. उदाहरण के लिए, विशिष्ट fluorochromes झिल्ली प्रोटीन करने के लिए संलग्न किया जा सकता है संलयन की घटनाओं के दौरान अपने विशिष्ट आंदोलन का पालन करने के लिए, के रूप में एबीसी मुझे, जो घुलनशील मैट्रिक्स प्रोटीन का मिश्रण 15 से एक अलग समय के पैमाने पर होता है संलयन के लिए दिखाया गया है.

Disclosures

The authors have nothing to disclose.

Acknowledgements

हम तंत्रिका विज्ञान अनुसंधान के लिए Tufts केंद्र NS047243 p30 (जैक्सन), Mitochondria आत्मीयता रिसर्च सहयोगात्मक (mtARC) के अंतःविषय जैव चिकित्सा अनुसंधान के लिए बोस्टन यूनिवर्सिटी मेडिकल कैम्पस, लिंक चिकित्सा निगम में इवांस केंद्र द्वारा समर्थित है, और इस काम का समर्थन करने के लिए Zeiss धन्यवाद.

Materials

Name of the reagent Company Catalogue number
COXIII-adenoviral PA-GFP Dr. Lippincott-Schwartz  
TMRE Invitrogen T669
Zeiss LSM 710 confocal Zeiss  

References

  1. Braschi, E., McBride, H. M. Mitochondria and the culture of the Borg: understanding the integration of mitochondrial function within the reticulum, the cell, and the organism. Bioessays. 32, 958-966 (2010).
  2. Chan, D. C. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 125, 1241-1252 (2006).
  3. Chan, D. C., Detmer, S. A. Functions and dysfunctions of mitochondrial dynamics. Nature Reviews Molecular Cell Biology. 8, 870-879 (2007).
  4. Han, X. J., Tomizawa, K., Fujimura, A., Ohmori, I., Nishiki, T., Matsushita, M., Matsui, H. Regulation of mitochondrial dynamics and neurodegenerative diseases. Acta Med Okayama. 65, 1-10 (2011).
  5. Huang, H., Choi, S. Y., Frohman, M. A. A quantitative assay for mitochondrial fusion using Renilla luciferase complementation. Mitochondrion. 10, 559-566 (2010).
  6. Karbowski, M., Arnoult, D., Chen, H., Chan, D. C., Smith, C. L., Youle, R. J. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J. Cell. Biol. 164, 493-499 (2004).
  7. Legros, F., Lombes, A., Frachon, P., Rojo, M. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell. 13, 4343-4354 (2002).
  8. Molina, A. J., Shirihai, O. S. Monitoring mitochondrial dynamics with photoactivatable [corrected] green fluorescent protein. Methods Enzymol. 457, 289-304 (2009).
  9. Molina, A. J., Wikstrom, J. D., Stiles, L., Las, G., Mohamed, H., Elorza, A., Walzer, G., Twig, G., Katz, S., Corkey, B. E., Shirihai, O. S. Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes. 58, 2303-2315 (2009).
  10. Otera, H., Mihara, K. Molecular mechanisms and physiologic functions of mitochondrial dynamics. J. Biochem. 149, 241-251 (2011).
  11. Patterson, G. H., Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science. 297, 1873-1877 (2002).
  12. Schauss, A. C., Huang, H., Choi, S. Y., Xu, L., Soubeyrand, S., Bilodeau, P., Zunino, R., Rippstein, P., Frohman, M. A., McBride, H. M. A novel cell-free mitochondrial fusion assay amenable for high-throughput screenings of fusion modulators. BMC Biol. 8, 100 (2011).
  13. Sheridan, C., Martin, S. J. Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion. 10, 640-648 (2010).
  14. Twig, G., Elorza, A., Molina, A. J., Mohamed, H., Wikstrom, J. D., Walzer, G., Stiles, L., Haigh, S. E., Katz, S., Las, G., Alroy, J., Wu, M., Py, B. F., Yuan, J., Deeney, J. T., Corkey, B. E., Shirihai, O. S. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433-446 (2008).
  15. Twig, G., Graf, S. A., Wikstrom, J. D., Mohamed, H., Haigh, S. E., Elorza, A., Deutsch, M., Zurgil, N., Reynolds, N., Shirihai, O. S. Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP. Am. J. Physiol. Cell Physiol. 291, C176-C184 (2006).
  16. Twig, G., Hyde, B., Shirihai, O. S. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim. Biophys. Acta. 1777, 1092-1097 (2008).
  17. Twig, G., Liu, X., Liesa, M., Wikstrom, J. D., Molina, A. J., Las, G., Yaniv, G., Hajnoczky, G., Shirihai, O. S. Biophysical properties of mitochondrial fusion events in pancreatic beta-cells and cardiac cells unravel potential control mechanisms of its selectivity. Am. J. Physiol. Cell. Physiol. 299, C477-C487 (2010).
  18. Twig, G., Shirihai, O. S. The interplay between mitochondrial dynamics and mitophagy. Antioxid. Redox Signal. 14, 1939-1951 (2011).
check_url/kr/3991?article_type=t

Play Video

Cite This Article
Lovy, A., Molina, A. J., Cerqueira, F. M., Trudeau, K., Shirihai, O. S. A Faster, High Resolution, mtPA-GFP-based Mitochondrial Fusion Assay Acquiring Kinetic Data of Multiple Cells in Parallel Using Confocal Microscopy. J. Vis. Exp. (65), e3991, doi:10.3791/3991 (2012).

View Video