Summary

Ribosome बाध्य नवजात polypeptides का अलगाव<em> इन विट्रो में</em> MRNA के साथ translational रोकें ब्लॉग की पहचान के लिए

Published: July 06, 2012
doi:

Summary

MRNA के पर translational को थामने साइटों की पहचान तकनीक वर्णित है. इस प्रक्रिया नवजात के दौरान एक लक्ष्य mRNA की इन विट्रो अनुवाद, नवजात denaturing जेल वैद्युतकणसंचलन का उपयोग श्रृंखला के आकार के विश्लेषण के बाद में राइबोसोम पर जमते polypeptides के अलगाव पर आधारित है.

Abstract

The rate of translational elongation is non-uniform. mRNA secondary structure, codon usage and mRNA associated proteins may alter ribosome movement on the messagefor review see 1. However, it’s now widely accepted that synonymous codon usage is the primary cause of non-uniform translational elongation rates1. Synonymous codons are not used with identical frequency. A bias exists in the use of synonymous codons with some codons used more frequently than others2. Codon bias is organism as well as tissue specific2,3. Moreover, frequency of codon usage is directly proportional to the concentrations of cognate tRNAs4. Thus, a frequently used codon will have higher multitude of corresponding tRNAs, which further implies that a frequent codon will be translated faster than an infrequent one. Thus, regions on mRNA enriched in rare codons (potential pause sites) will as a rule slow down ribosome movement on the message and cause accumulation of nascent peptides of the respective sizes5-8. These pause sites can have functional impact on the protein expression, mRNA stability and protein foldingfor review see 9. Indeed, it was shown that alleviation of such pause sites can alter ribosome movement on mRNA and subsequently may affect the efficiency of co-translational (in vivo) protein folding1,7,10,11. To understand the process of protein folding in vivo, in the cell, that is ultimately coupled to the process of protein synthesis it is essential to gain comprehensive insights into the impact of codon usage/tRNA content on the movement of ribosomes along mRNA during translational elongation.

Here we describe a simple technique that can be used to locate major translation pause sites for a given mRNA translated in various cell-free systems6-8. This procedure is based on isolation of nascent polypeptides accumulating on ribosomes during in vitro translation of a target mRNA. The rationale is that at low-frequency codons, the increase in the residence time of the ribosomes results in increased amounts of nascent peptides of the corresponding sizes. In vitro transcribed mRNA is used for in vitro translational reactions in the presence of radioactively labeled amino acids to allow the detection of the nascent chains. In order to isolate ribosome bound nascent polypeptide complexes the translation reaction is layered on top of 30% glycerol solution followed by centrifugation. Nascent polypeptides in polysomal pellet are further treated with ribonuclease A and resolved by SDS PAGE. This technique can be potentially used for any protein and allows analysis of ribosome movement along mRNA and the detection of the major pause sites. Additionally, this protocol can be adapted to study factors and conditions that can alter ribosome movement and thus potentially can also alter the function/conformation of the protein.

Protocol

1. डीएनए खाका और इन विट्रो प्रतिलेखन में तैयार T7 और / या जैसे SP6 transcriptional प्रमोटर के तहत ब्याज की जीन क्लोन है. टेम्पलेट डीएनए के लिए इन विट्रो प्रतिलेखन में एक उपयुक्त प्रतिबंध के बहाव क?…

Discussion

प्रतिलिपि प्रस्तुत करने योग्य परिणाम है, और इन विट्रो प्रतिलेखन और अनुवाद प्रतिक्रियाओं के लिए इस्तेमाल किया घटकों की गुणवत्ता एकाग्रता के लिए महत्वपूर्ण हैं. वर्तमान अध्ययन में हम व्यावसायिक र?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

यह काम मानव फ्रंटियर विज्ञान कार्यक्रम RGP0024 अनुदान द्वारा वित्त पोषित किया गया था.

Materials

Name of reagent/ Kit Company Catalogue number
MEGAscript T7 High yield Transcription Kit Ambion AM1333
Ribonuclease Inhibitor Invitrogen 15518012
Trans [35S]-Label MP Biomedicals 0151006
Ribonuclease-A Invitrogen 12091
Rabbit Reticulocyte Lysate System, Nuclease Treated Promega L4960
E. coli S30 Extract System for Linear Templates Promega L1030
Centrifugation Beckman Coulter Optima TLX Ultracentrifuge
Storage phosphor autoradiography GE Healthcare Typhoon 9410 variable mode imager
Software for nascent polypeptide analysis GE Healthcare Image Quant TL, v2005

References

  1. Komar, A. A. A pause for thought along the co-translational folding pathway. Trends Biochem. Sci. 34, 16-24 (2009).
  2. Sharp, P. M., Cowe, E., Higgins, D. G., Shields, D. C. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res. 16, 8207-8210 (1988).
  3. Dittmar, K. A., Goodenbour, J. M., Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).
  4. Ikemura, T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 2, 13-34 (1985).
  5. Wolin, S. L., Walter, P. Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J. 7, 3559-3569 (1998).
  6. Krasheninnikov, I. A., Komar, A. A., Adzhubei, I. A. Nonuniform size distribution of nascent globin peptides, evidence for pause localization sites, and a cotranslational protein-folding model. J. Protein Chem. 10, 445-454 (1991).
  7. Komar, A. A., Lesnik, T., Reiss, C. Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett. 462, 387-391 (1999).
  8. Komar, A. A., Jaenicke, R. Kinetics of translation of γ B crystallin and its circularly permutated variant in an in vitro cell-free system: possible relations to codon distribution and protein folding. FEBS Lett. 376, 195-198 (1995).
  9. Jha, S., Komar, A. A. Birth, life and death of nascent polypeptide chains. Biotechnol. J. 6, 623-640 (2011).
  10. Thanaraj, T. A., Argos, P. Ribosome-mediated translational pause and protein domain organization. Protein Sci. 5, 1594-1612 (1996).
  11. Kimchi-Sarfaty, C., Oh, J. M., Kim, I. W., Sauna, Z. E. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 315, 525-528 (2007).
  12. Schägger, H., von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368-379 (1987).
  13. Shirole, N., Balasubramanian, S., Yanofsky, C., Cruz-Vera, L. Isolation of Translating Ribosomes Containing Peptidyl-tRNAs for Functional and Structural Analyses. J. Vis. Exp. (48), e2498 (2011).
  14. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S., Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 324, 218-223 (2009).
check_url/kr/4026?article_type=t

Play Video

Cite This Article
Jha, S. S., Komar, A. A. Isolation of Ribosome Bound Nascent Polypeptides in vitro to Identify Translational Pause Sites Along mRNA. J. Vis. Exp. (65), e4026, doi:10.3791/4026 (2012).

View Video