Summary

测绘细菌功能的网络和途径<em>大肠杆菌</em使用合成基因阵列

Published: November 12, 2012
doi:

Summary

系统,大型合成基因(基因或基因上位性)互动屏幕可用于,探索遗传冗余和途径串扰。在这里,我们描述了一种高通量的定量合成基因阵列筛选技术,被称为ESGA我们制定的,阐明互作关系,并探索遗传相互作用网络<em>大肠杆菌</em>。

Abstract

表型是由一系列复杂的物理( 例如,蛋白质-蛋白质)和功能( 例如基因的基因或基因)的相互作用(GI)的1。虽然身体的相互作用可以表明,细菌蛋白相关复合,他们不一定透露途径级的功能relationships1的。 GI屏幕,其中带有两个缺失或失活的基因的双突变体的增长是衡量和相应的单突变体相比,可以照亮上位性位点之间的依赖关系,从而提供了一种查询和发现新的功能关系2。大型GI地图真核生物如酵母3-7,但GI信息仍稀疏,为原核生物8,阻碍了细菌的基因组功能注释。为此,我们和其他人开发的高通量定量细菌GI筛选方法9,10 </支持>。

在这里,我们提出所需的关键步骤进行定量E.大肠杆菌的合成遗传的阵列(ESGA)筛选程序,在基因组规模9,使用天然细菌接合和同源重组系统产生和测量的健身大量的双突变体在殖民地阵列格式简单地说,一个机器人是用来传输通过结合,氯霉素(Cm) – 的突变等位基因,从设计HFR(高频重组)的“供体菌株的成有序的阵列卡那霉素(Kan)的 – 显着的F-受体菌。通常情况下,我们使用损失的,功能单一的非必需的基因缺失突变体轴承( 例如 “庆应义塾”系列11)亚效等位基因突变和必需的基因( 基因赋予蛋白表达减少,稳定或活动9,12,13)协会非必要和必需的基因,水库查询功能pectively。共轭和随后通过同源重组介导的遗传交换后,将所得的双突变体包含两种抗生素的固体培养基上选择。后的产物,数字成像板和殖民地的大小进行定量计分使用一个内部的自动图像处理系统14。地理标志显示时的双突变体的增长速度是显着高于或低于预计9。加重(或负)的地理标志常常导致撞击上的相同的基本处理流程2的补偿途径,对基因的功能缺失型突变的之间。在这里,一个单一的基因被缓冲的损失,例如,可以是单突变体是可行的。然而,这两个途径是有害的损失和合成致死或疾病的结果( 增长缓慢)。相反,减轻(或正)的相互作用可以在同一个途径或蛋白复合物2作为基因之间发生删除单独任何一个基因的往往是足以扰乱途径或复合物,例如,额外扰动不降低活性,因此生长,进一步的正常功能。总体而言,系统地识别和分析GI网络可以提供公正,世界地图,大量的基因,错过了其他方法的途径级别的信息可以推断出9之间的功能关系。

Protocol

1。构建HFR Cavalli的供体突变株的重组工程15,16 用于构造的ESGA捐助污渍的步骤描述如下。简单地说,我们使用有针对性的λ – Red介导的同源重组所产生的PCR扩增可选择的DNA标记盒的片段创建非必需基因缺失突变株(1.1节),或者必需的基因亚效等位基因突变体供体株(1.2节),然后用16 “查询”定义GI网络。 注:</stro…

Representative Results

GIs reveal functional relationships between genes. Similarly, since genes in the same pathway display similar GI patterns and the GI profile similarity represents the congruency of phenotypes, we can group functionally related genes into pathways by clustering their GI profiles. Integrating GI and GI correlation networks with physical interaction information or other association data, such as genomic context (GC) relationships can also reveal the organization of higher-order functional modules that define core bio…

Discussion

我们提出了一个逐步的协议,,为使用机器人ESGA筛选,调查细菌的基因的功能,通过询问GI的途径。这种方法可以被用来研究单个基因,以及在大肠杆菌中的整个生物系统大肠杆菌 。小心地执行上述实验步骤,包括所有适当的控制措施,并进行认真分析和独立验证的GI的数据是新功能的发现成功的ESGA的关键方面。此外ESGA,在概念上类似的方法研究GI E.被称为GIANT大肠杆菌, <em…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是从基因组加拿大,安大略基因组研究所和加拿大卫生研究院拨款,JG和AE AG的资金支持,是一个收件人的凡尼尔加拿大研究生奖学金。

Materials

        I. Antibiotics 2 36471
Remove
Chloramphenicol   Bioshop #CLR201   3 36472
Remove
Kanamycin     #KAN201   4 36480
Remove
Ampicillin     # AMP201   5 36473
Remove
        2. Luria-Bertani medium 6 36474
Remove
LB powder   Bioshop #LBL405   7 36478
Remove
Agar   Bioshop #AGR003   8 36481
Remove
        3. Bacterial Strains and Plasmids 9 36475
Remove
Hfr Cavalli strain λred system (JL238)   Babu et al.14.     10 36476
Remove
pKD3   E. coli Genetic Stock Centre, Yale     11 36477
Remove
Keio E. coli F- recipient collection   National BioResource Project (NBRP) of Japan11     12 36479
Remove
Hypomorphic E. coli F- SPA-tag strains   Open biosystems; Babu et al.14     13 36491
Remove
        4. Primers 14 36486
Remove
pKD3-based desalted constant primers       F1: 5′-GGCTGACATGGGAATTAGC-3′
R1: 5′-AGATTGCAGCATTACACGTCTT-3′
15 36482
Remove
Desalted custom primers       Cm-R: 5′-TTATACGCAAGGCGACAAGG-3′
Cm-F: 5′- GATCTTCCGTCACAGGTAGG-3′
16 36483
Remove
Desalted custom primers       F2 and R2: 20 nt constant regions based on pKD3 sequence and 45 nt custom homology regions
F2 constant region:
5′-CATATGAATATCCTCCTTA-3′
R2 constant region:
5′-TGTGTAGGCTGGAGCTGCTTC-3’S1 and S2: 27 nt constant regions for priming the amplification of the SPA-Cm cassette and 45 nt custom homology regions
S1 constant region:
5’AGCTGGAGGATCCATGGAAAAGAGAAG -3′
S2 constant region:
5′- GGCCCCATATGAATATCCTCCTTAGTT -3′

KOCO-F and KOCO-C: 20 nt primers 200 bp away from the non-essential gene deletion site or the essential
gene SPA-tag insertion site
17 36484
Remove
        5. PCR and Electrophoresis Reagents 18 36485
Remove
Taq DNA polymerase   Fermentas # EP0281   19 36487
Remove
10X PCR buffer   Fermentas # EP0281   20 36488
Remove
10 mM dNTPs   Fermentas # EP0281   21 36489
Remove
25 mM MgCl2   Fermentas # EP0281   22 36490
Remove
Agarose   Bioshop # AGA002   23 36492
Remove
Loading dye   NEB #B7021S   24 36493
Remove
Ethidium bromide   Bioshop # ETB444   25 36497
Remove
10X TBE buffer   Bioshop # ETB444.10   26 36494
Remove
Tris Base   Bioshop # TRS001   27 36495
Remove
Boric acid   Sigma # T1503-1KG   28 36496
Remove
0.5 M EDTA (pH 8.0)   Sigma # B6768-500G   29 36498
Remove
DNA ladder   NEB #N3232L   30 36499
Remove
        6. DNA isolation and Clean-up Kits 31 36500
Remove
Genomic DNA isolation and purification kit   Promega #A1120   32 36501
Remove
Plasmid Midi kit   Qiagen # 12143   33 36502
Remove
QIAquick PCR purification kit   Qiagen #28104   34 36512
Remove
        7. Equipment for PCR, Transformation and Replica-pinning 35 36503
Remove
Thermal cycler   BioRad, iCycler     36 36504
Remove
Agarose gel electrophoresis   BioRad     37 36505
Remove
Electroporator   Bio-Rad GenePulser II     38 36506
Remove
0.2 cm electroporation cuvette   Bio-Rad     39 36507
Remove
42 °C water bath shaker   Innova 3100     40 36508
Remove
Beckman Coulter TJ-25 centrifuge   Beckman Coulter     41 36519
Remove
32 °C shaker   New Brunswick Scientific, USA     42 36509
Remove
32 °C plate incubator   Fisher Scientific     43 36510
Remove
RoToR-HDA benchtop robot   Singer Instruments     44 36511
Remove
96, 384 and 1,536 pin density pads   Singer Instruments     45 36513
Remove
96 or 384 long pins   Singer Instruments     46 36514
Remove
        8. Imaging Equipments 47 36515
Remove
Camera stand   Kaiser     48 36516
Remove
Digital camera, 10 megapixel   Any Vendor     49 36517
Remove
Light boxes, Testrite 16″ x 24″ units   Testrite     50 36527
Remove
        9. Pads or Plates Recycling 51 36518
Remove
10% bleach   Any Vendor     52 36520
Remove
70% ethanol   Any Vendor     53 36521
Remove
Sterile distilled water   Any Vendor     54 36522
Remove
Flow hood   Any Vendor     55 36523
Remove
Ultraviolet lamp   Any Vendor     56 36524
Remove
        10. Labware 57 36525
Remove
50 ml polypropylene tubes   Any Vendor     58 36526
Remove
1.5 ml micro-centrifuge tubes   Any Vendor     59 36528
Remove
250 ml conical flaks   VWR # 29140-045   60 36529
Remove
15 ml sterile culture tubes   Thermo Scientific # 366052   61 36530
Remove
Cryogenic vials   VWR # 479-3221   62 36531
Remove
Rectangular Plates   Singer Instruments     63 36532
Remove
96-well and 384-well microtitre plates   Singer Instruments Nunc   64 36533
Remove
Plate roller for sealing multi-well   Sigma #R1275   65 36535
Remove
plates   ABgene # AB-0580   66 36534
Remove
Adhesive plate seals   Fisher Scientific # 13-990-14   67 36537
Remove
-80 °C freezer   Any Vendor     68 36536
Remove

References

  1. Bandyopadhyay, S., Kelley, R., Krogan, N. J., Ideker, T. Functional maps of protein complexes from quantitative genetic interaction data. PLoS Comput. Biol. 4, e1000065 (2008).
  2. Costanzo, M., Baryshnikova, A., Myers, C. L., Andrews, B., Boone, C. Charting the genetic interaction map of a cell. Curr. Opin. Biotechnol. 22, 66-74 (2011).
  3. Costanzo, M., et al. The genetic landscape of a cell. Science. 327, 425-4231 (2010).
  4. Fiedler, D., et al. Functional organization of the S. cerevisiae phosphorylation network. Cell. 136, 952-963 (2009).
  5. Roguev, A., et al. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science. 322, 405-4010 (2008).
  6. Schuldiner, M., et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell. 123, 507-519 (2005).
  7. Wilmes, G. M., et al. A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol. Cell. 32, 735-746 (2008).
  8. Babu, M., et al. Systems-level approaches for identifying and analyzing genetic interaction networks in Escherichia coli and extensions to other prokaryotes. Mol. Biosyst. 12, 1439-1455 (2009).
  9. Butland, G., et al. coli synthetic genetic array analysis. Nat. Methods. 5, 789-7895 (2008).
  10. Typas, A., et al. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell. 143, 1097-10109 (2010).
  11. Baba, T., et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006-200008 (2006).
  12. Babu, M., et al. Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways. PLoS Genet. 7, e1002377 (2011).
  13. Nichols, R. J., et al. Phenotypic landscape of a bacterial cell. Cell. 144, 143-156 (2011).
  14. Babu, M., Gagarinova, A., Greenblatt, J., Emili, A. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli. Methods Mol Biol. 765, 125-153 (2011).
  15. Datsenko, K. A., Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A. 97, 6640-665 (2000).
  16. Yu, D., et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 97, 5978-5983 (2000).
  17. Typas, A., et al. quantitative analyses of genetic interactions in. E. coli. Nat. Methods. 5, 781-787 (2008).
  18. Zeghouf, M., et al. Sequential Peptide Affinity (SPA) system for the identification of mammalian and bacterial protein complexes. J. Proteome Res. 3, 463-468 (2004).
  19. Davierwala, A. P., et al. . , 1147-1152 (2005).
  20. Breslow, D. K., et al. A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat. Methods. 5, 711-718 (2008).
  21. Babu, M., et al. Sequential peptide affinity purification system for the systematic isolation and identification of protein complexes from Escherichia coli. Methods Mol. Biol. 564, 373-400 (2009).
  22. Butland, G., et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature. 433, 531-537 (2005).
  23. Hu, P., Janga, S. C., Babu, M., Diaz-Mejia, J. J., Butland, G., et al. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol. 7, (2009).
  24. Anderson, R. P., Roth, J. R. Tandem genetic duplications in phage and bacteria. Annu. Rev. Microbiol. 31, 473-505 (1977).
  25. Boone, C., Bussey, H., Andrews, B. J. Exploring genetic interactions and networks with yeast. Nat. Rev. Genet. 8, 437-449 (2007).
  26. Collins, S. R., et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature. 446, 806-8010 (2007).
  27. Le Meur, N., Gentleman, R. Modeling synthetic lethality. Genome Biol. 9, R135 (2008).
  28. Tong, A. H., et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science. 294, 2364-2368 (2001).
  29. Tong, A. H., et al. Global mapping of the yeast genetic interaction network. Science. 303, 808-813 (2004).
  30. Wong, S. L., et al. Combining biological networks to predict genetic interactions. Proc. Natl. Acad. Sci. U.S.A. 101, 15682-15687 (2004).
  31. van Opijnen, T., Bodi, K. L., Camilli, A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat. Methods. 6, 767-772 (2009).
  32. Gagarinova, A., Emili, A. Genome-scale genetic manipulation methods for exploring bacterial molecular biology. Mol. Biosyst. 8, 1626-1638 (2012).
  33. Dewey, C. N., et al. Positional orthology: putting genomic evolutionary relationships into context. Brief Bioinform. 12, 401-412 (2011).
  34. St Onge, R. P., et al. Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat. Genet. 39, 199-206 (2007).
check_url/kr/4056?article_type=t

Play Video

Cite This Article
Gagarinova, A., Babu, M., Greenblatt, J., Emili, A. Mapping Bacterial Functional Networks and Pathways in Escherichia Coli using Synthetic Genetic Arrays. J. Vis. Exp. (69), e4056, doi:10.3791/4056 (2012).

View Video