Summary

死亡率低大鼠模型的实验性蛛网膜下腔出血后迟发性脑血管痉挛评估

Published: January 17, 2013
doi:

Summary

动脉瘤性蛛网膜下腔出血(SAH)出血,进入蛛网膜下腔动脉瘤破裂时发生的。虽然此事件的发病率和死亡率一直在下降,由于更好的治疗方法,血管痉挛的风险蛛网膜下腔出血后仍然是相同的,因为它是几年前的。建立一个全面的和可再生的动物模型来确定启动事件,脑血管痉挛的重要性一直是研究的重点,因为在第一次使用的一个实验性血管痉挛大鼠模型于1979年由巴里<em>等。</em早期的工作表明,在大鼠急性单次注射自体血枕大池(几分钟内),但不迟发性脑血管痉挛<sup> 3,6,14</sup>。在这里,我们描述SAH大鼠模型死亡率低,可复制的延迟血管痉挛的结果。

Abstract

目的:描述并建立一个可重复的模型,演示了在大鼠动脉瘤性蛛网膜下腔出血(SAH)后迟发性脑血管痉挛,以确定始发事件,病理生理变化和潜在的治疗目标。

方法:对28只雄性SD大鼠(250 – 300克)任意分配给其中的两个群体 – 蛛网膜下腔出血或生理盐水对照组。 SAH组(n = 15)的大鼠蛛网膜下腔出血引起的双注射自体血液,相隔48小时,枕大池。同样,生理盐水组(n = 13)被注入到小脑延髓池的盐水对照组。 5天处死大鼠后,第二次注血和被保存下来的大脑进行组织学分析。血管痉挛的程度,测定使用的基底动脉的部分,通过测量使用NIH图像J软件的内部管腔的横截面面积。的意义测试使用的杜克/克莱默的统计分析。

结果:组织切片分析后,基底动脉管腔截面积较生理盐水组在SAH,脑血管痉挛,前一组一致的。在SAH组,基底动脉的内部面积(0.056微米±3)从血管痉挛5天之后,第二次血液注射液(七天后的初始注血),较生理盐水对照组的内部区域(0.069 ±3,P = 0.004)。有没有脑血管痉挛死亡率。

结论:双SAH模型大鼠诱导温和的,生存能力,基底动脉血管痉挛,在小动物模型,可用于研究脑血管痉挛的病理生理机制。低和可接受的死亡率是一个重要的标准,需要满足的一个理想的SAH动物模型,使血管痉挛的机制可以elucidated 7,8。进一步修改的模型可以进行调整日益严重的血管痉挛和神经系统检查。

Protocol

1。大鼠SAH主题的手术治疗注射0.15毫升自体动脉血大鼠麻醉用0.1毫克/公斤的氯胺酮/甲苯​​噻嗪啮齿动物的鸡尾酒,坐5分钟。 适当的麻醉也证实了减少后肢反射。 使用电子剃须刀的脖子,以鼻子枕区的区周围的头发被剃光了。 动物置于仰卧在手术台上和尾部被擦拭用优碘,以确保无菌切口。 一条笔直的1厘米正中切口方面的尾部腹侧延长至尾动脉解剖?…

Representative Results

在上面描述的协议中,有以下几个步骤,我们相信需要比以前已在文献中描述的模型更好地表征。在这里,我们专注于以实现可重复的低死亡率脑血管痉挛的小动物模型,并避免潜在的缺陷与这种模式,如果没有正确的步骤是必不可少的。 1。自体尾动脉抽血: 精心安排的angiocatheter尾动脉模型中是必不可少的第一步。 图1显示了一个26号的大鼠…

Discussion

灵长类动物,具有更相似的遗传组成和解剖特征的人,更紧密地模仿迟发性脑血管痉挛的事件,可以更容易地进行非侵入性成像(MRI和血管造影),以监测动脉的变化,比啮齿类动物8。然而,灵长类动物模型的成本过高,与更复杂的护理和道德问题,不是小动物模型。已开发的小动物SAH模型以前主要集中在诱导SAH的三种方法:1)血管内动脉的颅内动脉使血液进入蛛网膜下腔逃脱,周围动…

Disclosures

The authors have nothing to disclose.

Acknowledgements

在写这篇稿子,我们要感谢的努力,玛丽娄医生,神经科学和生理学系,Vallano的宝贵意见。

Materials

Name of equipment / reagent Company Catalogue Number
Male SD rats (250-300 g) Taconic SD-M
26 G Catheters Webster 8416683
25 G Needles Buffalo 305122
1 cc Syringes Central stores 54245
Ketamine/Xylazine cocktail Animal Care (SUNY)*
Betadine Central stores 51458
Sucrose Sigma S9378-1kg
Paraformaldehyde Sigma P6148-500G
Phosphate buffer solution Fisher BP-399-4
Surgical Table Harvard PY2 72-2590
OCT Compound (cryoprotection) VWR 25608-930
Superfrost Slides Fisher 12-550-15

* Synthesized at Department of Laboratory Animal Care, SUNY Upstate Medical University. Add 1 cc [100 mg/ml] of Xylazine to 10 ml [100 mg/ml] of Ketamine.

References

  1. Bederson, J. B., Germano, I. M., Guarino, L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke. 26, 1086-1091 (1995).
  2. Cheng, G., Wei, L., Zhi-Dan, S., Shi-Guang, Z., Xiang-Zhen, L. Atorvastatin ameliorates cerebral vasospasm and early brain injury after subarachnoid hemorrhage and inhibits caspase-dependent apoptosis pathway. BMC Neurosci. 10, 7-17 (2009).
  3. Jackowski, A., Crockard, A., Burnstock, G., Russell, R. R., Kristek, F. The time course of intracranial pathophysiological changes following experimental subarachnoid hemorrhage in the rat. J. Cereb. Blood Flow Metab. 10, 835-849 (1990).
  4. Kaoutzanis, M., Yokota, M., Sibilia, R., Peterson, J. W. Neurologic evaluation in a canine model of single and double subarachnoid hemorrhage. J. Neurosci. Methods. 50, 301-307 (1993).
  5. Karaoglan, A., Akdemir, O., Barut, S., Kokturk, S., Uzun, H., Tasyurekli, M., Colak, A. The effects of resveratrol on vasospasm after experimental subarachnoid hemorrhage in rats. Surg. Neurol. 70, 337-343 (2008).
  6. Lee, J. Y., Huang, D. L., Keep, R., Sagher, O. Characterization of an improved double hemorrhage rat model for the study of delayed cerebral vasospasm. J. Neurosci. Methods. 168, 358-366 (2008).
  7. Lee, J. Y., Sagher, O., Keep, R., Hua, Y., Xi, G. Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery. 65 (2), 331-343 (2009).
  8. Megyesi, J. F., Vollrath, B., Cook, D. A., Findlay, J. M. In vivo animal models of cerebral vasospasm: a review. Neurosurgery. 46, 448-460 (2000).
  9. Prunell, G. F., Mathiesen, T., Diemer, N. H., Svendgaard, N. A. Experimental subarachnoid hemorrhage: Subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 52, 165-176 (2003).
  10. Prunell, G. F., Mathiesen, T., Svendgaard, N. A. Experimental subarachnoid hemorrhage: Cerebral blood flow and brain metabolism during the acute phase in three different models in the rat. Neurosurgery. 54, 426-436 (2004).
  11. Ryba, M. S., Gordon-Krajcer, W., Walski, M., Chalimoniuk, M., Chrapusta, S. J. Hydroxylamine attenuates the effects of simulated subarachnoid hemorrhage: implication for the role of oxidative stress in cerebral vasospasm. Neurol. Res. 31, 195-199 (1999).
  12. Satoh, M., Parent, A. D., Zhang, J. H. Inhibitory effect with antisense mitogen-activated protein kinase oligodeoxynucleotide against cerebral vasospasm in rats. Stroke. 33, 775-781 (2002).
  13. Suzuki, H., Kanamaru, K., Tsunoda, H., Inada, H., Kuroki, M., Sun, H., Waga, S., Tanaka, T. Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats. J. Clin. Invest. 104, 59-66 (1999).
  14. Swift, D. M., Solomon, R. A. Subarachnoid hemorrhage fails to produce vasculopathy or chronic blood flow changes in rats. Stroke. 19, 878-882 (1988).
  15. Vatter, H., Weidauer, S., Konczalla, J., Dettmann, E., Zimmermann, M., Raabe, A., Preibisch, C., Zanella, F., Seifert, V. Time course in the development of cerebral vasospasm after experimental subarachnoid hemorrhage: clinical and neuroradiological assessment of the rat double hemorrhage model. Neurosurgery. 58, 1190-1197 (2006).
  16. Veelken, J. A., Laing, R. J., Jakubowski, J. The Sheffield model of subarachnoid hemorrhage in rats. Stroke. 26, 1279-1283 (1995).
  17. Zubkov, A. Y., Nanda, A., Zhang, J. H. Signal transduction pathways in cerebral vasospasm. Pathophysiology. 9, 47-61 (2003).
check_url/kr/4157?article_type=t

Play Video

Cite This Article
Dudhani, R. V., Kyle, M., Dedeo, C., Riordan, M., Deshaies, E. M. A Low Mortality Rat Model to Assess Delayed Cerebral Vasospasm After Experimental Subarachnoid Hemorrhage. J. Vis. Exp. (71), e4157, doi:10.3791/4157 (2013).

View Video