Summary

切向流超:A胶体银纳米粒子的大小选择与集中“绿色”方法

Published: October 04, 2012
doi:

Summary

切向流超滤(TFU),是一个循环的生物样品的重量为基础的分离方法。 TFU适于大小选择(1-20 nm直径)和高度集中大量的多分散性的银纳米颗粒(4 L的15.2微克毫升<sup> -1</sup8,539.9微克毫升下降到4毫升<sup> -1</sup>),以最小的聚集。

Abstract

如今,AGNPS被广泛用于制造消费类产品,水消毒剂,2疗法,1,3和生物医学设备由于其强大的抗菌性能。3-6这些纳米粒子的应用,我们强烈的AgNP大小和聚集状态的影响。存在许多挑战在受控制造7和未官能化的,同质的银奈米粒子从化学侵蚀性的上限/稳定剂或有机溶剂是免费的基于大小的隔离4,8 7-13摆脱限制成本高的毒性试剂,或减少的AgNP合成或分离方法( 例如 ,离心,尺寸相关的溶解度,尺寸排阻色谱法,等)的效率。10,14-18为了克服这一点,我们最近发现,TFU允许更大的控制权的大小,浓度和(300克赖顿农业非点源污染的聚集态毫升15.3微克毫升-1 198.7微克毫升-1)下降到10毫升的19比传统的隔离方法,如超速离心。

TFU是常用的重量为基础的分离的蛋白质,病毒和细胞的再循环方法。20,21简单地说,该液体样品通过中空纤维膜的孔径范围从1,000 kD的10 kD的一系列。较小的悬浮或溶解的样品中的成分将通过多孔隔板与溶剂(滤液)一起,而较大的成分被保留(滞留)。 TFU可能被认为是“绿色”的方法,因为它既不损害样品,也不需要额外的溶剂,以消除有毒过量的试剂和副产品。此外,TFU可能被应用到了大量的各种纳米粒子,作为疏水性和亲水性两种过滤器是可用的。

本研究的两个主要目标是:1)说明实验方面的的TFU方法通过一个被邀请的视频体验和2)表现出较大的胶体纳米粒子的体积和更小的体积,截留TFU方法的可行性。首先,unfuctionalized银奈米粒子(4升,15.2微克毫升-1)的合成通过用NaBH 4还原的AgNO 3使用既定克莱顿方法22,23。 AgNP多分散性,然后最小化通过使用50纳米的过滤器(460厘米2),以除去银奈米粒子和AgNP-聚集体由两个100 kD的滤波器(200厘米2和20厘米2)大于50nm,接着的3个步骤TFU集中银奈米粒子。有代表性的样品进行了表征,利用透射电子显微镜,紫外 – 可见吸收光谱法,拉曼光谱法,电感耦合等离子体发射光谱。最终阻滞高度集中(4毫升,8,539.9微克毫升-1),但卑微的汇总和均匀银奈米粒子为1-20纳米的直径。这对应于约62%的银浓度收率。

Protocol

1。胶体银奈米粒子的合成克莱顿法(略作修改,廉价的)22的反应机制中很详细的描述,在辅助信息的参考帕维尔et.al一起的不需要的水解侧的NaBH 4,在室温或更高温度下反应23 12-24小时,在10%HNO 3的浴,然后清洁所有的玻璃器皿为4-12小时,在1.25 M的NaOH在40%的乙醇浴中,最后的高压釜。玻璃器皿应彻底漂洗最低五次后,用超纯水(1…

Discussion

胶体银奈米粒子的紫外 – 可见吸收光谱法和拉曼光谱

这是众所周知的,数量的表面等离子体共振一种胶体的吸收光谱的峰的对称性的AGNPS增加而减小。此外,AgNP聚合导致的外观更广泛或红移的峰。25,26的存在下,在394 nm处的一个单一的,尖锐的和对称的SPR峰值表示中度聚集和粒度分布的小的,球形的银奈米粒子。

前和超滤后的胶体样品的纯度,证明…

Disclosures

The authors have nothing to disclose.

Acknowledgements

资金由美国国家科学基金会通过NUE工程和领导的联盟程序表示感谢。

Materials

Silver nitrate (AgNO3) Acros Organics Inc. CAS: 7761-88-8
Sodium borohydride (NaBH4) Acros Organics Inc. CAS: 16940-66-2
Nitric acid (HNO3, Optima) Fisher Scientific Inc. A467-1 Trace metal grade for ICP analysis
10,000 μg ml-1 silver standard, EnviroConcentrate Ultra Scientific US-IAA-047
KrosFlo Research IIi Tangential Flow Filtration System Spectrum Laboratories Inc. SYR2-U20-01N
0.05 μm PS (0.5 mm) 460 cm2 Spectrum Laboratories Inc. X30S-900-02N
Midi 100 kD PS 200 cm2 Spectrum Laboratories Inc. X3-100S-901-02N
Micro100 kD PS 20 cm2 Spectrum Laboratories Inc. X1AB-300-10N
MasterFlex C-Flex tubing L/S Size 17 Cole-Palmer Instrument Co. 06424-17
MasterFlex C-Flex tubing L/S Size 14 Cole-Palmer Instrument Co. 06424-14
Cary 50 UV-VIS-NIR spectrophotometer Varian Inc.
LabRam HR 800 system Horiba Jobin Yvon Inc.
Varian 710ES ICP-OES Varian Inc.

Table 1. Specific reagents and equipment.

References

  1. Savage, N., Diallo, M. S. Nanomaterials and Water Purification: Opportunities and Challenges. Journal of Nanoparticle Research. 7, 331-342 (2005).
  2. Jain, J. Silver Nanoparticles in Therapeutics: Development of an Antimicrobial Gel Formulation for Topical Use. Mol. Pharmaceutics. 6, 1388-1401 (2009).
  3. Dal Lago, V., Franca, d. O., de, A. G., Kobarg, J., Borba Cardoso, M. Size-selective silver nanoparticles: future of biomedical devices with enhanced bactericidal properties. J. Mater. Chem. 21, 12267-12273 (2011).
  4. Panacek, A. Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B. 110, 16248-16253 (2006).
  5. Elechiguerra, J. Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology. 3, 6 (2005).
  6. Jana, N. R., Sau, T. K., Pal, T. Growing Small Silver Particle as Redox Catalyst. J. Phys. Chem. B. 103, 115-121 (1999).
  7. Tolaymat, T. M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Sci. Total Environ. 408, 999-1006 (2010).
  8. Willets, K. Surface-enhanced Raman scattering (SERS) for probing internal cellular structure and dynamics. Analytical and Bioanalytical Chemistry. 394, 85-94 (2009).
  9. Novak, J. P., Nickerson, C., Franzen, S., Feldheim, D. L. Purification of Molecularly Bridged Metal Nanoparticle Arrays by Centrifugation and Size Exclusion Chromatography. Anal. Chem. 73, 5758-5761 (2001).
  10. Hossain, M. K., Kitahama, Y., Huang, G. G., Han, X., Ozaki, Y. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Analytical and Bioanalytical Chemistry. 394, 1747-1760 (2009).
  11. Henglein, A., Giersig, M. Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate. J. Phys. Chem. B. 103, 9533-9539 (1999).
  12. Sapsford, K. E., Tyner, K. M., Dair, B. J., Deschamps, J. R., Medintz, I. L. Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques. Anal. Chem. 83, 4453-4488 (2011).
  13. Al-Somali, A., Krueger, K. M., Falkner, J. C., Colvin, V. L. Recycling Size Exclusion Chromatography for the Analysis and Separation of Nanocrystalline Gold. Anal. Chem. 76, 5903-5910 (2004).
  14. Hanauer, M., Pierrat, S., Zins, I., Lotz, A., Sonnichsen, C. Separation of Nanoparticles by Gel Electrophoresis According to Size and Shape. Nano Lett. 7, 2881-2885 (2007).
  15. Sweeney, S. F., Woehrle, G. H., Hutchison, J. E. Rapid Purification and Size Separation of Gold Nanoparticles via Diafiltration. J. Am. Chem. Soc. 128, 3190-3197 (2006).
  16. Clarke, N. Z., Waters, C., Johnson, K. A., Satherley, J., Schiffrin, D. J. Size-Dependent Solubility of Thiol-Derivatized Gold Nanoparticles in Supercritical Ethane. Langmuir. 17, 6048-6050 (2001).
  17. Schaaff, T. G. Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra. J Phys Chem B. 101, 7885-7891 (1997).
  18. Trefry, J. C. Size Selection and Concentration of Silver Nanoparticles by Tangential Flow Ultrafiltration for SERS-Based Biosensors. J. Am. Chem. Soc. 132, 10970-10972 (2010).
  19. Bhattacharjee, S., Bhattacharjee, C., Datta, S. Studies on the fractionation of & beta-lactoglobulin from casein whey using ultrafiltration and ion-exchange membrane chromatography. J. Membr. Sci. 275, 141-150 (2006).
  20. Eppler, A., Weigandt, M., Schulze, S., Hanefeld, A., Bunjes, H. Comparison of different protein concentration techniques within preformulation development. Int. J. Pharm. 421, 120-129 (2011).
  21. Creighton, J. A., Blatchford, C. G., Albrecht, M. G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. 2, 790-798 (1979).
  22. Pavel, I. E. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment. J. Chem. Educ. , (2011).
  23. Rasband, W. S. . ImageJ. , (1997).
  24. Kelly, K. L., Coronado, E., Zhao, L. L., Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 107, 668-677 (2003).
  25. Śileikaitċ, A., Prosyčevas, I., Puišo, J., Juraitis, A., Guobienċ, A. Analysis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution. Mater. Sci. (Medziagotyra). 12, 287-291 (2006).
  26. Lewis, L. N. Chemical catalysis by colloids and clusters. Chem. Rev. 93, 2693-2730 (1993).
  27. Li, Y., Wu, Y., Ong, B. S. Facile Synthesis of Silver Nanoparticles Useful for Fabrication of High-Conductivity Elements for Printed Electronics. J. Am. Chem. Soc. 127, 3266-3267 (2005).
  28. Sun, Y., Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science. 298, 2176-2179 (2002).
  29. Han, X., Zhao, B., Ozaki, Y. Surface-enhanced Raman scattering for protein detection. Analytical and Bioanalytical Chemistry. 394, 1719-1727 (2009).
  30. Pavel, I. Label-Free SERS Detection of Small Proteins Modified to Act as Bifunctional Linkers. J. Phys. Chem. C. 112, 4880-4883 (2008).
  31. Ladner, D. A., Steele, M., Weir, A., Hristovski, K., Westerhoff, P. Functionalized nanoparticle interactions with polymeric membranes. J. Hazard. Mater. , (2011).
check_url/kr/4167?article_type=t

Play Video

Cite This Article
Anders, C. B., Baker, J. D., Stahler, A. C., Williams, A. J., Sisco, J. N., Trefry, J. C., Wooley, D. P., Pavel Sizemore, I. E. Tangential Flow Ultrafiltration: A “Green” Method for the Size Selection and Concentration of Colloidal Silver Nanoparticles. J. Vis. Exp. (68), e4167, doi:10.3791/4167 (2012).

View Video