Summary

Overvågning Cell-selvstændige døgnrytmen ur Rhythms of Gene Expression Brug Luciferase bioluminescens Reporters

Published: September 27, 2012
doi:

Summary

Døgnrytmen ure fungerer i de enkelte celler, dvs, de er celle-autonome. Her beskriver vi metoder til at generere celle-autonome ur modeller bruger ikke-invasiv, luciferase-baseret real-time bioluminescens teknologi. Reporter celler giver medgørlig, funktionelle modelsystemer til at studere døgnrytmen biologi.

Abstract

Hos pattedyr, er mange aspekter af adfærd og fysiologi, såsom søvn-vågne cyklus og lever metabolisme reguleres af endogene døgnrytmen ure (revideret 1,2). Den circadian tidtagning systemet er en hierarkisk multi-oscillator netværk med den centrale ur placeret i suprachiasmatic kerne (SCN) at synkronisere og koordinere ekstra-SCN og perifere ure andetsteds 1,2. Individuelle celler er de funktionelle enheder til generering og vedligeholdelse af cirkadiske rytmer 3,4, og disse oscillatorer i forskellige vævstyper i organismen deler en bemærkelsesværdigt ens biokemisk negativ feedback-mekanisme. Men på grund af vekselvirkninger på det neurale netværk niveau i SCN og gennem rytmiske, systemiske tidskoder på organismal niveau, er døgnrytmen på organismal niveau ikke nødvendigvis celle-autonome 5-7. Sammenlignet med traditionelle undersøgelser af lokomotorisk aktivitet in vivo og SCN eksplantater ex vivo, cell-baserede in vitro assays mulighed for opdagelsen af celle-autonome cirkadiske defekter 5,8. Strategisk celle-baserede modeller er mere eksperimentelt medgørlig for fænotypisk karakterisering og hurtig opdagelse af grundlæggende ur mekanismer 5,8-13.

Fordi døgnrytmer er dynamiske, er langsgående målinger med høj tidsopløsning nødvendig for at vurdere urfunktion. I de senere år har real-time bioluminescens optagelse ved hjælp ildflueluciferase som journalist blevet en fælles teknik til at studere døgnrytmen hos pattedyr 14,15, da det giver mulighed for undersøgelse af persistens og dynamik af molekylære rytmer. At overvåge celle-selvstændige døgnrytmer for genekspression, kan luciferase reportere indføres i celler via transient transfektion 13,16,17 eller stabil transduktion 5,10,18,19. Her beskriver vi en stabil transduktion protokollen med lentivirus-medieret genlevering. THan lentiviral vector system er overlegen i forhold til traditionelle fremgangsmåder, såsom forbigående transfektion og kimcellelinjetransmission grund af dens effektivitet og alsidighed: den tillader effektiv levering og stabil integration i værtsgenomet af både delende og ikke-delende celler 20. Når et reporter-cellelinien er etableret, kan dynamikken i urfunktion undersøges gennem bioluminescens optagelse. Vi først beskrive generation af P (Per2)-d Luc reporter linjer, og derefter præsentere data fra denne og andre cirkadiske journalister. I disse assays er 3T3-musefibroblaster og U2OS humane osteosarcomceller anvendes som cellulære modeller. Vi diskuterer også forskellige måder at bruge disse ur modeller i cirkadiske undersøgelser. Fremgangsmåder beskrevet her kan anvendes til en lang række celletyper til at studere cellulære og molekylære basis for døgnrytmen ure, og kan være nyttig i løse problemer i andre biologiske systemer.

Protocol

1. Konstruktion af lentiviral Luciferase Reporters Et pattedyr cirkadiske reporterkonstruktion indeholder sædvanligvis en ekspressionskassette, hvor en cirkadisk promotor fusioneret med luciferasegenet. Både ligerings-og rekombination-baserede strategier er almindeligt anvendt til DNA kloning. Som et eksempel har vi her beskrive en rekombination baseret Gateway kloning fremgangsmåde til frembringelse af en P (Per2)-d Luc lentiviral reporter, hvor den destabiliserede lu…

Discussion

1. Ændringer af nuværende protokol

1,1 Optagelse enheder og gennemløb overvejelser

På grund af sin kommercielle tilgængelighed har LumiCycle (Actimetrics) blevet den mest almindeligt anvendte automatiserede luminometer enhed for real-time optagelse 4,5,9,19,29-31. The LumiCycle anvender fotomultiplikatorrør (PMT'er), som lysdetektorer, der giver ekstremt høj følsomhed og lav støj 14, og derfor er særlig egnet til dataregistreringen …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet delvist af National Science Foundation (IOS-0.920.417) (ACL).

Materials

Name of reagent Company Catalogue number Comments
DMEM HyClone SH30243FS For regular cell growth
DMEM Invitrogen 12100-046 For luminometry
FBS HyClone SH3091003  
Pen/Strep/Gln(100x) HyClone SV3008201  
B-27 Invitrogen 17504-044  
D-Luciferin Biosynth L-8220  
Poly-L-lysine Sigma P4707  
Polybrene Millipore TR-1003-G  
Forskolin Sigma F6886  
All other chemicals Sigma    
Equipment
Tissue culture incubator     5% CO2 at 37°C
Tissue culture hood     BSL-2 certified
Light & fluorescent microscope     Phase contrast optional
LumiCycle Actimetrics    

References

  1. Reppert, S. M., Weaver, D. R. Coordination of circadian timing in mammals. Nature. 418, 935-941 (2002).
  2. Hastings, M. H., Reddy, A. B., Maywood, E. S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4, 649-661 (2003).
  3. Nagoshi, E. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell. 119, 693-705 (2004).
  4. Welsh, D. K. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr. Biol. 14, 2289-2295 (2004).
  5. Liu, A. C. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell. 129, 605-616 (2007).
  6. Kornmann, B. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 5, e34 (2007).
  7. Hogenesch, J. B., Herzog, E. D. Intracellular and intercellular processes determine robustness of the circadian clock. FEBS Lett. 585, 1427-1434 (2011).
  8. DeBruyne, J. P., Weaver, D. R., Reppert, S. M. Peripheral circadian oscillators require CLOCK. Curr. Biol. 17, 538-539 (2007).
  9. Liu, A. C. Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet. 4, e1000023 (2008).
  10. Zhang, E. E. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell. 139, 199-210 (2009).
  11. Baggs, J. E. Network features of the mammalian circadian clock. PLoS Biol. 7, e52 (2009).
  12. Hirota, T. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIalpha as a clock regulatory kinase. PLoS Biol. 8, e1000559 (2010).
  13. Ukai-Tadenuma, M. Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell. 144, 268-281 (2011).
  14. Yamazaki, S., Takahashi, J. S. Real-time luminescence reporting of circadian gene expression in mammals. Methods Enzymol. 393, 288-301 (2005).
  15. Welsh, D. K., Imaizumi, T., Kay, S. A. Real-time reporting of circadian-regulated gene expression by luciferase imaging in plants and mammalian cells. Methods Enzymol. 393, 269-288 (2005).
  16. Sato, T. K. Feedback repression is required for mammalian circadian clock function. Nat. Genet. 38, 312-319 (2006).
  17. Ueda, H. R. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37, 187-192 (2005).
  18. Brown, S. A. The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol. 3, e338 (2005).
  19. Hirota, T. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3beta. Proc. Natl. Acad. Sci. U.S.A. 105, 20746-20751 (2008).
  20. Tiscornia, G., Singer, O., Verma, I. M. Production and purification of lentiviral vectors. Nat. Protoc. 1, 241-245 (2006).
  21. Ueda, H. R. A transcription factor response element for gene expression during circadian night. Nature. 418, 534-539 (2002).
  22. Zufferey, R., Donello, J. E., Trono, D., Hope, T. J. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886-2892 (1999).
  23. Buhr, E. D., Yoo, S. H., Takahashi, J. S. Temperature as a universal resetting cue for mammalian circadian oscillators. Science. 330, 379-385 (2010).
  24. Balsalobre, A., Damiola, F., Schibler, . U.A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 93, 929-937 (1998).
  25. Savelyev, S. A., Larsson, K. C., Johansson, A., Lundkvist, G. B. S. Slice Preparation, Organotypic Tissue Culturing and Luciferase Recording of Clock Gene Activity in the Suprachiasmatic Nucleus. J. Vis. Exp. (48), e2439 (2011).
  26. Akashi, M., Ichise, T., Mamine, T., Takumi, T. Molecular mechanism of cell-autonomous circadian gene expression of Period2, a crucial regulator of the mammalian circadian clock. Mol. Biol. Cell. 17, 555-565 (2006).
  27. Ohno, T., Onishi, Y., Ishida, N. A novel E4BP4 element drives circadian expression of mPeriod2. Nucleic Acids Res. 35, 648-655 (2007).
  28. Maier, B. A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev. 23, 708-718 (2009).
  29. Yoo, S. H. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. U.S.A. 101, 5339-5346 (2004).
  30. Liu, A. C., Lewis, W. G., Kay, S. A. Mammalian circadian signaling networks and therapeutic targets. Nat. Chem. Biol. 3, 630-639 (2007).
  31. Ko, C. H. Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol. 8, e1000513 (2010).
  32. Izumo, M., Johnson, C. H., Yamazaki, S. Circadian gene expression in mammalian fibroblasts revealed by real-time luminescence reporting: temperature compensation and damping. Proc. Natl. Acad. Sci. U.S.A. 100, 16089-16094 (2003).
  33. Izumo, M., Sato, T. R., Straume, M., Johnson, C. H. Quantitative analyses of circadian gene expression in mammalian cell cultures. PLoS Comput. Biol. 2, e136 (2006).
  34. Chen, Z. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc. Natl. Acad. Sci. U.S.A. 109, 101-106 (2011).
  35. Yamaguchi, S. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science. 302, 1408-1412 (2003).
  36. Akashi, M., Hayasaka, N., Yamazaki, S., Node, K. Mitogen-activated protein kinase is a functional component of the autonomous circadian system in the suprachiasmatic nucleus. J. Neurosci. 28, 4619-4623 (2008).
  37. Hoshino, H., Nakajima, Y., Ohmiya, Y. Luciferase-YFP fusion tag with enhanced emission for single-cell luminescence imaging. Nat. Methods. 4, 637-639 (2007).
  38. Asai, M. Visualization of mPer1 transcription in vitro: NMDA induces a rapid phase shift of mPer1 gene in cultured SCN. Curr. Biol. 11, 1524-1527 (2001).
  39. Wilsbacher, L. D. Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice in vivo. Proc. Natl. Acad. Sci. U.S.A. 99, 489-494 (2002).
  40. Yamazaki, S. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 288, 682-685 (2000).
  41. Welsh, D. K., Noguchi, T., Yuste, R. Cellular bioluminescence imaging. Imaging: A Laboratory Manual. , 369-385 (2011).
  42. Nakajima, Y. Enhanced beetle luciferase for high-resolution bioluminescence imaging. PLoS One. 5, e10011 (2010).
  43. Guilding, C. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus. Mol. Brain. 2, 28 (2009).
  44. O’Neill, J. S. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science. 320, 949-953 (2008).
  45. Fuller, P. M., Lu, J., Saper, C. B. Differential rescue of light- and food-entrainable circadian rhythms. Science. 320, 1074-1077 (2008).
  46. Mukherjee, S. Knockdown of Clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression-like behavior. Biol. Psychiatry. 68, 503-511 (2010).
  47. Saijo, K. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 137, 47-59 (2009).
  48. Elias, G. M. Synapse-specific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins. Neuron. 52, 307-320 (2006).
  49. Isojima, Y. CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc. Natl. Acad. Sci. U.S.A. 106, 15744-15749 (2009).
  50. Bucan, M., Abel, T. The mouse: genetics meets behaviour. Nat. Rev. Genet. 3, 114-123 (2002).
  51. Hughes, M. E. Harmonics of circadian gene transcription in mammals. PLoS Genet. 5, e1000442 (2009).
  52. Atwood, A. Cell-autonomous circadian clock of hepatocytes drives rhythms in transcription and polyamine synthesis. Proc. Natl. Acad. Sci. U.S.A. 108, 18560-18565 (2011).
  53. Panda, S. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 109, 307-320 (2002).

Play Video

Cite This Article
Ramanathan, C., Khan, S. K., Kathale, N. D., Xu, H., Liu, A. C. Monitoring Cell-autonomous Circadian Clock Rhythms of Gene Expression Using Luciferase Bioluminescence Reporters. J. Vis. Exp. (67), e4234, doi:10.3791/4234 (2012).

View Video