Summary

Profiling glicana de Polímeros da planta da parede celular usando Microarrays

Published: December 17, 2012
doi:

Summary

Uma técnica chamada<strong> C</strong> Omprehensive<strong> M</strong> Icroarray<strong> P</strong> Profiling olymer (CoMPP) para a caracterização de glicanos da parede celular vegetal é descrito. Este método combina a especificidade dos anticorpos monoclonais dirigidos para epitopos definidos glicano-com uma plataforma de microarray em miniatura analítico permitindo rastreio de ocorrência de glicano em uma ampla variedade de contextos biológicos.

Abstract

Paredes das células de planta são matrizes complexas de glicanos heterogéneos, que desempenham um papel importante na fisiologia e desenvolvimento de plantas e fornecer as matérias-primas para as sociedades humanas (por exemplo, as indústrias de madeira, papel, têxteis, e biocombustíveis) 1,2. No entanto, compreender a biossíntese e função destes componentes permanece um desafio.

Glicanos de parede celular são quimicamente e conformacionalmente diversificada, devido à complexidade dos blocos de construção, os resíduos glicosilo. Estas ligações formam em posições múltiplas e diferem na estrutura do anel, a configuração isomérica ou anomérico, e, além disso, são substituídas por uma matriz de não-açúcar resíduos. Composição varia de glicano na célula diferente e / ou tipos de tecidos, ou mesmo sub-domínios de uma única célula de parede 3. Além disso, a sua composição é também modificado durante o desenvolvimento 1, ou em resposta a estímulos ambientais 4.

Em excesso de 2.000 genes têm paredes celulares de plantas são matrizes complexas de glicanos heterogéneas foram previstos para ser envolvido na biossíntese de glicanos parede celular e modificação em 5 Arabidopsis. No entanto, relativamente poucos dos genes biossintéticos foram funcionalmente caracterizados 4,5. Genética reversa são difíceis porque os genes expressos diferencialmente são muitas vezes, muitas vezes em níveis baixos, entre os tipos de células 6. Além disso, estudos mutantes são muitas vezes dificultada pela redundância gene ou mecanismos compensatórios para garantir o funcionamento adequado parede celular é mantida 7. Assim, novas abordagens são necessárias para rapidamente caracterizar a diversidade de estruturas de glicano e facilitar abordagens genômica funcional para a compreensão a síntese da parede celular e modificação.

Os anticorpos monoclonais (mAb) 8,9 surgiram como uma ferramenta importante para a determinação da estrutura de glicano e distribuição nas plantas. Estes reconhecem distepítopos INCT presentes dentro das principais classes de glicanos da parede celular vegetal, incluindo pectinas, xiloglucanos, xilanos, mananos, glucanos e Arabinogalactanos. Recentemente o seu uso tem sido estendido para experiências em grande escala de triagem para determinar a abundância relativa de glicanos em uma ampla gama de tipos de tecido da planta e, simultaneamente, 9,10,11.

Apresentamos aqui um microarray-based método de rastreio de glicano chamado Comprehensive Polymer Microarray Profiling (CoMPP) (Figuras 1 & 2) 10,11, que permite múltiplas amostras (100 s) a ser rastreada utilizando uma plataforma de microarray miniaturizado com o reagente reduzida e os volumes de amostra. Os sinais no local de microarray pode ser formalmente quantificadas para dar semi-quantitativas de dados sobre a ocorrência de glicano epítopo. Esta abordagem é bem adequado para o rastreamento de alterações glicano em sistemas biológicos complexos 12 e proporcionando uma visão global da composição da parede celular particularmente quando o conhecimento préviof este não está disponível.

Protocol

1. Coleção de tecidos e Preparação Recolher 100 mg de peso fresco de tecidos de planta (um mínimo de 10 mg de peso seco) em pelo menos em triplicado para cada tecido de interesse. Os passos que se seguem descrevem a preparação de material de parede celular a partir de tecidos vegetativos. No caso de tecidos de armazenamento, não-desejado amido é enzimaticamente removida antes de se proceder à extracção de polímeros da parede celular, como descrito anteriormente 13. Homogeneiz…

Representative Results

A abundância relativa de glicanos em seis tipos de tecidos (filamentos das anteras, pólen, ovários, pétalas, sépalas e estigma) de flores Nicotiana alata foi determinada utilizando CoMPP. A Figura 3A mostra um microarray representativa que foi sondado com mAb específico para JIM5 parcialmente (baixo) homogalaturonano methylesterified (HG), um epitopo que ocorre em polissacarídeos pécticos 14. O epitopo JIM5 é detectada em extractos de CDTA de todos os tecidos florais no entanto é mais alta …

Discussion

CoMPP é um método rápido e sensível para perfilar a composição de glicano de centenas de plantas derivadas de amostras em uma questão de dias. Este método complementa os já disponíveis bacterianas ou de mamíferos plataformas de matriz de glicano para rastreio de alto rendimento de interacções de hidratos de carbono com glicano de proteínas de ligação, tais como lectinas, receptores e anticorpos 16. Com uma grande diversidade de testes disponíveis para a detecção de glicanos da parede celula…

Disclosures

The authors have nothing to disclose.

Acknowledgements

IEM gostaria de reconhecer o dinamarquês Research Council (FTP e FNU) para financiamento. ERL reconhece o apoio de uma DP ARC subvenção. AB agradece o apoio do Centro de Excelência em ARC Usina concessão paredes celulares.

Materials

Name of the reagent Company Catalogue number Comments (optional)
3 mm Tungsten Carbide beads Qiagen 69997  
Collection microtubes (1.2 mm) Qiagen 19560 1.5 ml microfuge tubes can also be used
Qiagen TissueLyser II Qiagen 85300  
3 mm glass beads Sigma Aldrich Z143928  
CDTA Sigma Aldrich 34588  
Cadmium oxide Sigma Aldrich 202894  
1,2-diaminoethane Sigma Aldrich 03550  
Nitrocellulose membrane (0.22 μm pore size) GE-water & process technologies EP2HY00010 different pore sized membranes are suitable for different pin types
Xact II microarrayer robot Labnext 001A the Xact II robot was fitted with a custom 20 x 20 cm ceramic plate to which the nitrocellulose membrane is attached
Xtend RM microarray pins Labnext 0037-350 pins must be suitable for spotting on membranes
384 well microtiter plates (polypropylene) Greiner 781207  
Anti-glycan monoclonal antibodies Plant Probes/
CarboSource/Biosupplies
  Websites; PlantProbes (www.plantprobes.net), Carbosource (www.carbosource.net) and Biosupplies (www.biosupplies.com.au).
Anti-Rat IgG (whole molecule) – Peroxidase antibody produced in goat. Sigma A9037 the type of secondary antibodies depends on the primary antibody used (e.g. raised in rat, mouse, goat etc).
SIGMAFAST 3,3′-Diaminobenzidine tablets Sigma D4293 the type of developing reagent depends on the secondary antibodies used and the detection method (colourmetric, or chemiluminecent).
SuperSignal West Pico Chemiluminescent Substrate Thermoscientific 34080 see above
Xplore Image Processing Software LabNext 008 many software types with automatic gridding tools are available to measure pixel value of microarray spots.
Plant polysaccharides Sigma/Megazyme    

References

  1. Carpita, N. C., Gibeaut, D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1-30 (1993).
  2. Somerville, C. Biofuels. Curr. Biol. 17, 115-119 (2007).
  3. Willats, W. G., Orfila, C., Limberg, G., et al. Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. implications for pectin methyl esterase action, matrix properties, and cell adhesion. J. Biol. Chem. 276, 19404-19413 (2001).
  4. Doblin, M. S., Pettolino, F., Bacic, A. Plant cell walls: the skeleton of the plant world. Functional Plant Biology. 37, 357-381 (2010).
  5. Carpita, N., Tierney, M., Campbell, M. Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Molecular Biology. 47, 1-5 (2001).
  6. Sarria, R., Wagner, T. A., O’Neill, M. A., Faik, A., et al. Characterization of a family of Arabidopsis genes related to xyloglucan fucosyltransferase1. Plant Physiol. 127, 1595-1606 (2001).
  7. Somerville, C., Bauer, S., Brininstool, G. Toward a systems approach to understanding plant cell walls. Science. 306, 2206-2211 (2004).
  8. Willats, W. G. T., Knox, J. P., Rose, J. K. C. Molecules in context: probes for cell wall analysis. The Plant Cell Wall. , 92-110 (2003).
  9. Pattathil, S., Avci, U., Baldwin, D., et al. A Comprehensive Toolkit of Plant Cell Wall Glycan-Directed Monoclonal Antibodies. Plant Physiology. 153, 514-525 (2010).
  10. Moller, I. E., Sørensen, I., Bernal, A. J., et al. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. The Plant J. 50, 1118-1128 (2007).
  11. Sørensen, I., Willats, W. G. T. Screening and characterization of plant cell walls using carbohydrate microarrays. Methods Mol. Biol. 715, 115-121 (2011).
  12. Moller, I. E., Licht, D. e. F. i. n. e., Harholt, H. H., J, , et al. The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens. PLoS One. 6 (3), e17506 (2011).
  13. Pettolino, F. A., Walsh, C., Fincher, G. B. Chemical procedures for the determination of polysaccharide composition of plant cell walls. Nature Protocols. , (2012).
  14. Clausen, M. H., Willats, W. G. T., Knox, J. P. Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydrate Res. 338, 1797-1800 (2003).
  15. Verhertbruggen, Y., Marcus, S. E., Haeger, A., et al. Developmental complexity of arabinan polysaccharides and their processing in plant cell walls. Plant J. 59, 413-425 (2009).
  16. Heimburg-Molinaro, J., Song, X., Smith, D. F. UNIT 12.10 Preparation and Analysis of Glycan Microarray. Current Protocols in Protein Science. , (2011).
  17. McCartney, L., Blake, A., Flint, J., et al. Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. PNAS. 103, 4765-4770 (2006).
  18. Caño-Delgado, A. I., Metzlaff, K., Bevan, M. W. The eli1 mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development. 127, 3395-3405 (2000).
  19. Manabe, Y., Nafisi, M., Verhertbruggen, Y., et al. Loss-of-Function Mutation of REDUCED WALL ACETYLATION2 in Arabidopsis Leads to Reduced Cell Wall Acetylation and Increased Resistance to Botrytis cinerea. Plant Physiology. 155, 1068-1078 (2011).
  20. Updegraff, D. Semimicro determination of cellulose in biological materials. Anal. Biochem. 32, 420-424 (1969).
  21. 21Moller, I., Marcus, S. E., Haeger, A., et al. High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchial clustering of their carbohydrate microarray binding profiles. Glycoconjugate Journal. 25, 37-48 (2007).
  22. Sørensen, I., Pettolino, F. A., Wilson, S. M., et al. Mixed linkage (1→3),(1→4)-β-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J. 54 (13), 510-521 (2008).
  23. Domozych, D. S., Sørensen, I., Willats, W. G. T. The distribution of cell wall polymers during antheridium development and spermatogenesis in the Charophycean green alga, Chara. 2104, 1045-1056 (2009).
  24. Singh, B., Avci, U., Eichler Inwood, S. E. A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles. Plant Physiol. 150, 684-699 (2009).
  25. Øbro, J., Sørensen, I., Derkx, P., et al. High-throughput screening of Erwinia chrysanthemi pectin methylesterase variants using carbohydrate microarrays. Proteomics. 9, 1861-1868 (2009).

Play Video

Cite This Article
Moller, I. E., Pettolino, F. A., Hart, C., Lampugnani, E. R., Willats, W. G., Bacic, A. Glycan Profiling of Plant Cell Wall Polymers using Microarrays. J. Vis. Exp. (70), e4238, doi:10.3791/4238 (2012).

View Video