Summary

Udforskning arteriernes glatte muskulatur Kv7 kaliumkanal Funktion hjælp Patch Clamp Elektrofysiologi og Pressure Myography

Published: September 14, 2012
doi:

Summary

Målinger af Kv7 (KCNQ) kalium kanal aktivitet i isolerede arterielle myocytter (ved hjælp af patch clamp elektrofysiologiske teknikker) parallelt med målinger af kvælerslange / dilator reaktioner (med tryk myography) kan afsløre vigtige oplysninger om de roller, Kv7 kanaler i vaskulære glatte muskulatur fysiologi og farmakologi.

Abstract

Kontraktion eller relaksation af glatte muskelceller i væggene i modstandskar bestemmer arteriediameteren og derved styrer strømmen af ​​blod gennem karret og bidrager til det systemiske blodtryk. Kontraktionen Processen reguleres primært af cytosolisk calciumkoncentration ([Ca2 +] cyt), som igen styres af en række forskellige ion-transportører og kanaler. Ionkanaler er almindelige mellemprodukter i signaltransduktionsveje aktiveres af vasoaktive hormoner for at bevirke vasokonstriktion eller vasodilatation. Og ionkanaler er ofte ramt af terapeutiske midler enten bevidst (f.eks kalciumblokkere anvendes til at fremkalde vasodilatation og lavere blodtryk) eller utilsigtet (f.eks at fremkalde uønskede kardiovaskulære bivirkninger).

Kv7 (KCNQ) spænding-aktiverede kaliumkanaler er for nylig blevet impliceret som vigtige fysiologiske og terapeutiske Targets for regulering af glatte muskelkontraktion. For at belyse de specifikke roller Kv7 kanaler i både fysiologiske signaltransduktion og i aktionerne af terapeutiske midler, er vi nødt til at undersøge, hvordan deres aktivitet moduleres på celleniveau samt vurdere deres bidrag inden for rammerne af det intakte arterie.

Rotte mesenteriske arterier et nyttigt modelsystem. Arterierne kan let dissekeres, renses for bindevæv, og anvendt til fremstilling af isolerede arterielle myocytter til patch-clamp-elektrofysiologi, eller kanyle og sættes under tryk for målinger af vasokonstriktor / vasodilator reaktioner under relativt fysiologiske betingelser. Her beskriver vi de metoder, der anvendes til begge typer af målinger og give nogle eksempler på, hvordan det eksperimentelle design kan integreres til at give en bedre forståelse af de roller, disse ionkanaler i reguleringen af ​​vaskulær tonus.

Protocol

1. Kirurgisk excision af tyndtarmens Mesenterial Vaskulær Arcade Bedøve en 300-400 g Sprague-Dawley-rotte med isofluran (4%) administreres ved inhalation. Udfør en midtlinie laparotomi at eksponere tyndtarmens mesenterium. Exteriorize den lille og store tarmen gennem abdominal incision med stor omhu for at undgå traumer på udsatte tarm og mesenterium. Forsigtigt lufte mesenteriet ud over steril gaze. Kirurgisk punktafgiftspligtige tyndtarmen og en del af tyktarmen, herunder caecum (bl…

Discussion

De metoder og eksperimentelle metoder beskrevet her er ganske robust og kan producere klare og reproducerbare resultater, når de anvendes med omhyggelig opmærksomhed på detaljer. Gode ​​elektrofysiologiske optagelser og konstriktion / dilatation af arterielle segmenter er afhængige af sundhed celler og arterie segmenter, hhv. Cellepræparater kan variere fra dag til dag, selv efter samme protokol. Isolation Solutions kan anvendes i op til 2 uger, men hvis kvaliteten af ​​cellen præparatet er lav af to deraf…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev finansieret af en bevilling fra National Heart, Lung, og Blood Institute (NIH R01-HL089564) til KLB og PhD-stipendier fra American Heart Association (09PRE2260209) og Arthur J. Schmitt Foundation til BKM.

Materials

Name Company Catalog Number Comments
Sodium Chloride Sigma S5886 Dissecting Solution: 145
Bath solution for Electrophysiology*: 140
Internal solution for electrophysiology: 10
Isolation solution for myocytes*: 140
Bath solution for pressure myography: 145
Lumen solution for pressure myography: 145
Potassium chloride Sigma P5405 Dissecting Solution: 4.7
Bath solution for Electrophysiology*: 5.36
Internal solution for electrophysiology: 135
Isolation solution for myocytes*: 5.36
Bath solution for pressure myography: 4.7
Lumen solution for pressure myography: 4.7
Potassium EGTA Sigma E4378 Internal solution for electrophysiology: 0.05
HEPES Sigma H9136 Bath solution for Electrophysiology*: 10
Internal solution for electrophysiology: 10
Isolation solution for myocytes*: 10
Disodium hydrogen phosphate Sigma S5136 Isolation solution for myocytes*: 0.34
Potassium hydrogen phosphate Sigma P5655 Isolation solution for myocytes*: 0.44
Magnesium Chloride Sigma M2393 Bath solution for Electrophysiology*: 1.2
Internal solution for electrophysiology: 1
Isolation solution for myocytes*: 1.2
Calcium Chloride Sigma C7902 Bath solution for Electrophysiology*: 2
Isolation solution for myocytes*: 0.05
Sodium phosphate Fisher Scientific BP331-1 Dissecting Solution: 1.2
Bath solution for pressure myography: 1.2
Lumen solution for pressure myography: 1.2
Magnesium Sulfate Sigma M2643 Dissecting Solution: 1.17
Bath solution for pressure myography: 1.17
Lumen solution for pressure myography: 1.17
MOPS Fisher Scientific BP308 Dissecting Solution: 3
Bath solution for pressure myography: 3
Lumen solution for pressure myography: 3
Pyruvic acid Sigma P4562 Dissecting Solution: 2
Bath solution for pressure myography: 2
Lumen solution for pressure myography: 2
EDTA dihydrate Research Organics 9572E Dissecting Solution: 0.02
Bath solution for pressure myography: 0.02
Lumen solution for pressure myography: 0.02
D-Glucose Sigma G7021 Dissecting Solution: 5
Bath solution for Electrophysiology*: 10
Internal solution for electrophysiology: 20
Isolation solution for myocytes*: 10
Bath solution for pressure myography: 5
Lumen solution for pressure myography: 5
Bovine serum albumin Sigma A3912 Dissecting Solution: 1%
Lumen solution for pressure myography: 1%
pH Dissecting Solution: 7.4
Bath solution for Electrophysiology*: 7.3
Internal solution for electrophysiology: 7.2
Isolation solution for myocytes*: 7.2
Bath solution for pressure myography: 7.4
Lumen solution for pressure myography: 7.4
Osmolarity Dissecting Solution: 300
Bath solution for Electrophysiology*: 298
Internal solution for electrophysiology: 298
Isolation solution for myocytes*: 298
Bath solution for pressure myography: 300
Lumen solution for pressure myography: 300

*11

Table 1. Components of solutions used in the experiment.

References

  1. Passmore, G. M. KCNQ/M Currents in Sensory Neurons: Significance for Pain Therapy. J. Neurosci. 23, 7227-7236 (2003).
  2. Falloon, B. J. Comparison of small artery sensitivity and morphology in pressurized and wire-mounted preparations. Am. J. Physiol. Heart Circ. Physiol. 268, H670-H678 (1995).
  3. Dunn, W. R. Enhanced resistance artery sensitivity to agonists under isobaric compared with isometric conditions. Am. J. Physiol. Heart Circ. Physiol. 266, H147-H155 (1994).
  4. Buus, N. H. Differences in sensitivity of rat mesenteric small arteries to agonists when studied as ring preparations or as cannulated preparations. Br. J. Pharmacol. 112, 579-587 (1994).
  5. Abdelhalim, M. A. Effects of big endothelin-1 in comparison with endothelin-1 on the microvascular blood flow velocity and diameter of rat mesentery in vivo. Microvasc. Res. 72, 108-112 (2006).
  6. Altura, B. M. Dose-response relationships for arginine vasopressin and synthetic analogs on three types of rat blood vessels: possible evidence for regional differences in vasopressin receptor sites within a mammal. J. Pharmacol. Exp. Ther. 193, 413-423 (1975).
  7. Henderson, K. K. Vasopressin-induced vasoconstriction: two concentration-dependent signaling pathways. J. Appl. Physiol. 102, 1402-1409 (2007).
  8. Mackie, A. R. Vascular KCNQ potassium channels as novel targets for the control of mesenteric artery constriction by vasopressin, based on studies in single cells, pressurized arteries, and in vivo measurements of mesenteric vascular resistance. J. Pharmacol. Exp. Ther. 325, 475-483 (2008).
  9. Brueggemann, L. I. Differential effects of selective cyclooxygenase-2 inhibitors on vascular smooth muscle ion channels may account for differences in cardiovascular risk profiles. Mol. Pharmacol. 76, 1053-1061 (2009).
  10. Brueggemann, L. I., Kaneez, F. S. . Patch Clamp Technique. , (2012).
  11. Berra-Romani, R. TTX-sensitive voltage-gated Na+ channels are expressed in mesenteric artery smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 289, H137-H145 (2005).

Play Video

Cite This Article
Brueggemann, L. I., Mani, B. K., Haick, J., Byron, K. L. Exploring Arterial Smooth Muscle Kv7 Potassium Channel Function using Patch Clamp Electrophysiology and Pressure Myography. J. Vis. Exp. (67), e4263, doi:10.3791/4263 (2012).

View Video