Summary

制备<em>果蝇</em>中央神经元<em在原位</em>膜片钳

Published: October 15, 2012
doi:

Summary

原位补丁钳用于神经元的电生理特性的完整电路。在果蝇的遗传模型膜片钳是困难的,因为中枢神经系统,周围环绕着一个强大的护套。本文介绍的步骤,取出护套和清洁随后的膜片钳记录神经元。

Abstract

短的世代时间和轻便的基因技术使果蝇优良的遗传模型的基础神经科学的研究。离子通道是神经元兴奋性的基础上,所有的行为,因为他们调解。电压门控离子通道的克隆果蝇的电压门控钾通道振动筛1,2。对理解离子通道和细胞膜的兴奋性神经系统功能的作用,它是有用的,结合强大的遗传工具,可以在果蝇在原位膜片钳记录。多年来,这样的录音已经阻碍了果蝇的中枢神经系统的小尺寸。此外,强大的鞘的神经胶质细胞和胶原蛋白构成障碍补丁吸液管进入中央神经元。本套去除任何在成年果蝇中枢神经系统的神经元膜片钳记录的一个必要的先决条件。近年来科学家们一直在能够进行原位膜片钳记录神经元在成人大脑3,4和腹神经索的胚胎,幼虫7,8,9,10,5,6和成年果蝇 11,12,13,14。一个稳定的千兆密封是一个很好的补丁的主要的先决条件,并取决于与细胞膜,以避免漏电流的补丁移液器的清洁接触。因此,从成年果蝇神经元全细胞原位膜片钳记录,必须彻底清洗。神经节鞘在第一步骤中,将被处理酶,并机械地除去,使靶细胞可访问。在第二步骤中,细胞膜具有进行研磨,使得没有神经胶质细胞,胶原蛋白或其他材料的层,可能会扰乱千兆密封件形成。本文介绍了如何编写一个确定的中央神经元在果蝇的腹神经索,飞行运动神经元的5(MN5 15),体细胞整个C埃尔膜片钳记录。识别和知名度的神经元是通过有针对性的表达GFP MN5。我们不打算解释膜片钳技术。

Protocol

下面的描述是不特定的一个运动神经元。它可以用于与任何神经元。在这个例子中,我们使用的飞行运动神经元(MN5)支配抑制剂肌肉dorsolongitudinal翼(DLM)的的2 dorsalmost纤维。为了识别和可视化MN5我们使用UAS/GAL4系统表达GFP的飞行运动神经元(和其他一些神经元)。 1。解剖成年果蝇访问背部分的腹神经索(VNC) 解剖成年果蝇背侧沿其背中线在Sylgard的?…

Discussion

当可视化的细胞绿色荧光蛋白的荧光蛋白,如,重要的是不超过制剂暴露太多的光。这可能会导致光损伤。我们使用100W HBO短弧汞灯泡,照明,我们还可以使用中性密度(ND)的0.8(的色度ND过滤器0.3和0.5)。为了能够判断清洗良好的能见度的质量是至关重要的。因此,ND过滤器可以去除约20秒,多次短时间。

应用了一些积极的压力时,细胞体“襟翼”一点。这有助于判断质量?…

Disclosures

The authors have nothing to disclose.

Materials

Agent/item Company Catalog number
Protease type XIV Sigma Aldrich USA P5147
Microfil flexible injection needle World Precision Instruments USA MF28G-5
Borosilicate Glass Capillaries, o.d. 1.5 mm, i.d. 1.0 mm, no filament World Precision Instruments USA PG52151-4
DiI Invitrogen USA D3899
Sylgard Elastomer Kit 184 (Dow Corning) www.ellsworth.com 184 SIL ELAST KIT
ND filter set (unmounted) Chroma 22000b series
Electrode holder 1-HL-U Molecular Devices 1-HL-U

References

  1. Papazian, D. M., Schwarz, T. L., Tempel, B. L., Jan, Y. N., Jan, L. Y. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science. 237, 749-753 (1987).
  2. Tempel, B. L., Papazian, D. M., Schwarz, T. L., Jan, Y. N., Jan, L. Y. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science. 237, 770-775 (1987).
  3. Gu, H., O’Dowd, D. K. Whole Cell Recordings from Brain of Adult Drosophila. J. Vis. Exp. (6), e248 (2007).
  4. Gu, H., Jiang, S. A., Campusano, J. M., Iniguez, J., Su, H., Hoang, A. A., Lavian, M., Sun, X., O’Dowd, D. K. Cav2-type calcium channels encoded by cac regulate AP-independent neurotransmitter release at cholinergic synapses in adult Drosophila brain. J. Neurophysiol. 101, 42-53 (2009).
  5. Baines, R. A., Bate, M. Electrophysiological development of central neurons in the Drosophila embryo. J. Neurosci. 18, 4673-4683 (1998).
  6. Lin, W. H., Wright, D. E., Muraro, N. I., Baines, R. A. Alternative splicing in the voltage-gated sodium channel DmNav regulates activation, inactivation, and persistent current. J. Neurophysiol. 102, 1994-2006 (2009).
  7. Worrell, J. W., Levine, R. B. Characterization of voltage-dependent Ca2+ currents in identified Drosophila motoneurons in situ. J. Neurophysiol. 100, 868-878 (2008).
  8. Srinivasan, S., Lance, K., Levine, R. B. Segmental differences in firing properties and potassium currents in Drosophila larval motoneurons. J. Neurophysiol. , (2011).
  9. Choi, J. C., Park, D., Griffith, L. C. Electrophysiological and morphological characterization of identified motor neurons in the Drosophila third instar larva central nervous system. J. Neurophysiol. 91, 2353-2365 (2004).
  10. Pulver, S. R., Griffith, L. C. Spike integration and cellular memory in a rhythmic network from Na+/K+ pump current dynamics. Nat. Neurosci. 13, 53-59 (2010).
  11. Fayyazuddin, A., Zaheer, M. A., Hiesinger, P. R., Bellen, H. J. The nicotinic acetylcholine receptor Dalpha7 is required for an escape behavior in Drosophila. PLoS Biol. 4, e63 (2006).
  12. Duch, C., Vonhoff, F., Ryglewski, S. Dendrite elongation and dendritic branching are affected separately by different forms of intrinsic motoneuron excitability. J. Neurophysiol. 100, 2525-2536 (2008).
  13. Ryglewski, S., Duch, C. Shaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motoneuron. J. Neurophysiol. 102, 3673-3688 (2009).
  14. Ryglewski, S., Lance, K., Levine, R. B., Duch, C. Cav2 Channels Mediate LVA and HVA Calcium Currents in Drosophila Motoneurons. J. Physiol. , (2011).
  15. Ikeda, K., Koenig, J. H. Morphological identification of the motor neurons innervating the dorsal longitudinal flight muscle of Drosophila melanogaster. J. Comp. Neurol. 1273, 436-444 (1988).
  16. Boerner, J., Godenschwege, T. A. Whole Mount Preparation of the Adult Drosophila Ventral Nerve Cord for Giant Fiber Dye Injection. J. Vis. Exp. (52), e3080 (2011).
check_url/kr/4264?article_type=t

Play Video

Cite This Article
Ryglewski, S., Duch, C. Preparation of Drosophila Central Neurons for in situ Patch Clamping. J. Vis. Exp. (68), e4264, doi:10.3791/4264 (2012).

View Video