Summary

Verwendung von Zeitraffer-Mikroskopie zur Anoxie-induzierten Suspended Animation in Visualisieren<em> C. elegans</em> Embryonen

Published: December 03, 2012
doi:

Summary

Hier wird beschrieben ein<em> In vivo</em> Technik zur Bilder subzellulären Strukturen in Tieren, die mit Anoxie einen Gasstrom durch microincubation Kammer in Verbindung mit einer drehenden Scheibe Konfokalmikroskop. Dieses Verfahren ist einfach und flexibel genug, um eine Vielzahl von experimentellen Parameter und Modellsystemen anzupassen.

Abstract

Caenorhabdits elegans wurde ausgiebig in der Studie der Stressresistenz, die durch die Transparenz des adulten Stadien und Embryo als auch durch die Verfügbarkeit von genetischen Mutanten und transgenen Linien Expression einer Vielzahl von Fusionsproteinen 1-4 erleichtert wird. Darüber hinaus können dynamische Prozesse wie Zellteilung Darstellung unter Verwendung von fluoreszierend markierten Reporter-Proteine ​​werden. Das Studium der Mitose kann durch den Einsatz von Zeitrafferexperimente in verschiedenen Systemen einschließlich intakten Organismen erleichtert; somit der frühen C. elegans Embryo wird auch für diese Studie geeignet. Präsentiert hier ist eine Technik, mit der in vivo Bildgebung von sub-zellulären Strukturen in Reaktion auf Sauerstoffmangel (99,999% N 2; <2 ppm O 2) Stress ist möglich, mit einem einfachen Gasfluss durch Setup auf einem High-Power-Mikroskop. Ein microincubation Kammer in Verbindung mit Stickstoffgas durchströmt und einer drehenden Scheibe konfokalen Mikroskop verwendetum eine kontrollierte Umgebung, in der Tiere in vivo abgebildet werden können. Verwendung GFP-markierten Gamma-Tubulin und Histon, kann die Dynamik und Verhaftung der Zellteilung kontrolliert werden, bevor, während und nach der Einwirkung von einer sauerstoffarmen Umgebung. Die Ergebnisse dieser Technik sind hochauflösende, detaillierte Videos und Bilder von zellulären Strukturen innerhalb Blastomeren von Embryonen ausgesetzt Sauerstoffmangel.

Protocol

Ein. Probenvorbereitung Produzieren oder zu erhalten entsprechenden transgenen C. elegans-Stamm von Interesse unter Verwendung transgener Methoden oder von Caenorhabditis Genetics Stock Center (CGC) oder Kollegen. In diesem Fall sind wir mit dem Stamm TH32 (pie-1 :: tbg-1 :: GFP; pie-1 :: GFP :: H2B) 5 bis Chromosomen und Zentrosomen als Marker für die Zellteilung zu visualisieren. Generieren Sie eine synchronisierte Bevölkerung mit einem der drei Methoden: 1)…

Representative Results

C. elegans Embryonen bei starken Sauerstoffmangel (Anoxie) können durch die Verhaftung biologische Prozesse einschließlich Entwicklung und Zellteilung 7 überleben. Die Anoxie induzierte Verhaftung der Zellteilung können überwacht werden, bei einem sub-zellulären Ebene durch Verwendung einer microincubation Kammer in Verbindung mit Stickstoffgas durchströmt und einer drehenden Scheibe konfokalen Mikroskops um eine kontrollierte Umgebung, in der Tiere in vivo abgebildet werden kann erst…

Discussion

Sauerstoffmangel und Suspended Animation

Obgleich das Engagement in schweren Sauerstoffmangel kann tödlich sein für einige Organismen, sind einige Organismen, um die Exposition gegenüber Anoxie überleben. Im Falle von C. elegans, hängt Überleben von Anoxie Belichtung auf Entwicklungsstadium und ist ansprechend auf Anoxie Eintritt in einen Zustand der reversiblen suspendiert Animation in dem eine Anzahl von beobachtbaren biologische Prozesse werden verhaftet. Zellteilung, Entwickl…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Wir möchten unsere Wertschätzung für die Eingabe und Kommentare von Mitgliedern des Padilla Lab vermitteln. Nematode Stämme in dieser Arbeit wurden von der Caenorhabditis Genetics Center, das von der NIH National Center for Research Resources (NCRR) finanziert ist. Wir anerkennen und danken Dr. Lon Turnbull für technische Hilfe bei der konfokalen Mikroskopie. Diese Arbeit wurde durch ein Stipendium der National Science Foundation (NSF-IOS, CAREER) an PAP unterstützt

Materials

Reagents/Equipment Composition
Hypochlorite solution     0.7 g KOH, 12 ml 5% NaOCl, bring to 50 ml with ddH20
M9 buffer     3 g KH2PO4, 11 g Na2HPO4, 5 g NaCl, 1 ml (1 M) MgSO4 per 1 L ddH2O
Glass microscope slides Fisher Scientific 12-550-343 3″x1″x1.0 mm
Round micro coverglass Electron Microscopy Sciences 72223-01 25 mm Diameter
Halocarbon oil 700 Sigma H8898-100ml  
Anesthetic     0.5% tricaine, 0.05% tetramisole
Leiden Closed Perfusion Microincubator Harvard Apparatus 650041  
UHP Nitrogen Calgaz (Air Liquide)   >99.9990% N2 <2 ppm O2
Plastic tubing VWR 89068-468 0.062″ ID x 0.125″ OD
Spinning Disk Confocal Microscope McBain Systems   Zeiss inverted optical microscope, epifluorescence illumination system, CSU-10 Yokogawa confocal scanner, Hamamatsu electron multiplier CCD camera.

References

  1. Powell-Coffman, J. A. Hypoxia signaling and resistance in C. elegans. Trends Endocrinol. Metab. 21 (10), 435-440 (2010).
  2. Padilla, P. A., Ladage, M. L. Suspended animation, diapause and quiescence: Arresting the cell cycle in C. elegans. Cell Cycle. 11, (2012).
  3. Hu, P. J. Dauer. WormBook. , 1-19 (2007).
  4. Zhou, K. I., Pincus, Z., Slack, F. J. Longevity and stress in Caenorhabditis elegans. Aging (Albany NY). 3, 733-753 (2011).
  5. Schmidt, D. J., Rose, D. J., Saxton, W. M., Strome, S. Functional analysis of cytoplasmic dynein heavy chain in Caenorhabditis elegans with fast-acting temperature-sensitive mutations. Mol. Biol. Cell. 16, 1200-1212 (2005).
  6. Sulston, J., Hodgkin, J., Wood, W. B. . The Nematode Caenorhabditis elegans. , 587-606 (1988).
  7. Padilla, P. A., Nystul, T. G., Zager, R. A., Johnson, A. C., Roth, M. B. Dephosphorylation of Cell Cycle-regulated Proteins Correlates with Anoxia-induced Suspended Animation in Caenorhabditis elegans. Mol. Biol Cell. 13, 1473-1483 (2002).
  8. Hajeri, V. A., Trejo, J., Padilla, P. A. Characterization of sub-nuclear changes in Caenorhabditis elegans embryos exposed to brief, intermediate and long-term anoxia to analyze anoxia-induced cell cycle arrest. BMC Cell Biol. 6, 1471-2121 (2005).
  9. Padilla, P. A., Goy, J. M., Hajeri, P. A., Padilla, . Anoxia. , (2012).
  10. Hajeri, V. A., Little, B. A., Ladage, M. L., Padilla, P. A. NPP-16/Nup50 function and CDK-1 inactivation are associated with anoxia-induced prophase arrest in Caenorhabditis elegans. Mol. Biol. Cell. 21, 712-724 (2010).
  11. Nystul, T. G., Goldmark, J. P., Padilla, P. A., Roth, M. B. Suspended animation in C. elegans requires the spindle checkpoint. Science. 302, 1038-1041 (2003).
  12. Margalit, A., Vlcek, S., Gruenbaum, Y., Foisner, R. Breaking and making of the nuclear envelope. J. Cell Biochem. 95, 454-465 (2005).
  13. Maddox, A. S., Maddox, P. S. High-resolution imaging of cellular processes in Caenorhabditis elegans. Methods Cell Biol. 107, 1-34 (2012).
  14. Miller, D. L., Roth, M. B. C. elegans are protected from lethal hypoxia by an embryonic diapause. Curr. Biol. 19, 1233-1237 (2009).
check_url/kr/4319?article_type=t

Play Video

Cite This Article
Garcia, A. M., Ladage, M. L., Padilla, P. A. Use of Time Lapse Microscopy to Visualize Anoxia-induced Suspended Animation in C. elegans Embryos. J. Vis. Exp. (70), e4319, doi:10.3791/4319 (2012).

View Video