Summary

Selektive Aufnahme von 5-Hydroxymethylcytosin aus genomischer DNA

Published: October 05, 2012
doi:

Summary

Beschrieben wird ein zweistufiges Verfahren unter Verwendung Kennzeichnung β-Glucosyltransferase (β-GT), um ein Azid-Glukose zu 5-HMC übertragen, gefolgt von Klickchemie einen Linker Biotin für die einfache und dichteunabhängigen Anreicherung zu übertragen. Dieses effiziente und spezifische Kennzeichnung Methode ermöglicht die Anreicherung von 5-HMC mit extrem niedrigen Hintergrund und hohem Durchsatz epigenomischen Mapping über Next-Generation-Sequenzierung.

Abstract

5-Methylcytosin (5-mC) bildet ~ 2-8% der gesamten Cytosine in humanen genomischen DNA und beeinflusst ein breites Spektrum an biologischen Funktionen, einschließlich Genexpression, die Aufrechterhaltung der Genom Integrität, elterliche Prägung, X-Chromosom-Inaktivierung, die Regulierung des Entwicklung, Alterung und Krebs 1. Kürzlich wurde die Anwesenheit eines oxidierten 5-mC, 5-Hydroxymethylcytosin (5-HMC), in Säugerzellen entdeckt, insbesondere in embryonalen Stamm (ES)-Zellen und neuronalen Zellen 2-4. 5-HMC wird durch Oxidation von 5-mC katalysiert durch TET Familie Eisen (II) / α-Ketoglutarat-abhängige Dioxygenase 2, 3 erzeugt. 5-HMC wird vorgeschlagen, bei der Aufrechterhaltung der embryonalen Stamm (mES) Zelle, normale Hämatopoiese und Tumore und Zygote Entwicklung 2, 5-10 beteiligt sein. Zum besseren Verständnis der Funktion von 5-HMC, ist eine zuverlässige und einfache Sequenzierung von wesentlicher Bedeutung. Traditionelle Bisulfit-Sequenzierung kann nicht unterscheiden, 5-HMC von 5-mC 11 </sup>. Die Biologie des 5-HMC entwirren, haben wir eine hoch effiziente und selektive chemische Ansatz zu kennzeichnen und zu erfassen 5-HMC entwickelt, unter Ausnutzung eines Bakteriophagen Enzym, das einen Glucoserest fügt bis 5-HMC speziell 12.

Hier beschreiben wir eine einfache Zwei-Schritt-Verfahren zur selektiven chemischen Kennzeichnung der 5-HMC. Im ersten Markierungsschritt wird 5-HMC in genomischer DNA mit einem 6-Azid-Glucose katalysiert durch β-GT, eine Glucosyltransferase aus Bakteriophagen T4 bezeichnet, in einer Weise, die das 6-Azid-Glucose überträgt 5-HMC vom modifiziertes Cofaktor, UDP-6-N3-Glc (6-N3UDPG). Im zweiten Schritt, Biotinylierung wird ein Disulfid Biotin Linker an die Azidgruppe durch Klickchemie befestigt. Beide Schritte sind hoch spezifisch und effizient, was zu vervollständigen Kennzeichnung unabhängig von der Fülle der 5-HMC in der genomischen Regionen und geben extrem geringe Hintergrund. Nach Biotinylierung von 5-HMC, die 5-HMC-enthaltende DNA-Fragmente werden dann selektiv eingefangenmit Streptavidin-Kügelchen in einer Dichte-unabhängige Weise. Die daraus resultierenden 5-HMC-angereicherte DNA-Fragmente konnten für nachgelagerte Analysen, einschließlich der nächsten Generation Sequenzierung verwendet werden.

Unsere selektive Markierung und Capture-Protokoll überträgt hohe Empfindlichkeit auf jede Quelle der genomischen DNA mit variablem / diverse 5-HMC Häufigkeiten. Obwohl der Hauptzweck dieses Protokolls ist seine nachgeordneten Anwendung (dh. Der nächsten Generation Sequenzierung Karte aus dem 5-HMC Verteilung im Genom), ist es kompatibel mit Einzel-Molekül-, real-time SMRT (DNA)-Sequenzierung, das ist der Lage ist, single-base Auflösung Sequenzierung von 5-HMC.

Protocol

Ein. Genomic DNA-Fragmentierung Fragment genomischer DNA unter Verwendung von Ultraschallbehandlung auf einen gewünschten Größenbereich für das Genom-weite Sequenzierplattform geeignet. (Wir gehen normalerweise in ~ 300 bp beschallen.) Überprüfen Sie die Größenverteilung der fragmentierten genomischen DNA auf einem 1% Agarosegel (Abbildung 1). 2. DNA-Präparation Bestimmen Sie die Ausgangs-DNA Mengen auf die Füll…

Discussion

5-Hydroxymethylcytosin (5-HMC) ist ein kürzlich identifizierten epigenetische Veränderung in erheblichen Mengen in bestimmten Säugetieren Zelltypen. Das hier vorgestellte Verfahren ist für die Bestimmung der genomweiten Verteilung der 5-HMC. Wir verwenden T4 Bakteriophagen β-glucosyltransferase zur Erzeugung eines manipulierten Glucose-Rest enthaltend eine Azidgruppe auf die Hydroxylgruppe von 5-HMC übertragen. Die Azidgruppe kann chemisch mit Biotin werden zur Feststellung, Affinitätsanreicherung und Sequenzieru…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Diese Studie wurde zum Teil durch die National Institutes of Health (GM071440 nach CH und NS051630/MH076090/MH078972 PJ) unterstützt.

Materials

Name Company Catalog # Comment
Reagents
5M Sodium chloride (NaCl) Promega V4221
0.5M pH8.0 Ethylenediaminetetraacetic acid (EDTA) Promega V4231
1M Trizma base (Tris) pH7.5 Invitrogen 15567-027)
HEPES 1M, pH7.4 Invitrogen 15630
Magnesium chloride (MgCl2) 1M Ambion AM9530G
Dimethyl sulfoxide (DMSO) Sigma D8418
Tween 20 Fisher BioReagents BP337-100
DBCO-S-S-PEG3-Biotin conjugate Click Chemistry Tools A112P3
1,4-Dithiothreitol, ultrapure (DTT) Superpure Invitrogen 15508-013
QIAquick Nucleotide Removal Kit Qiagen 28304
Micro Bio-Spin 6 Column Bio-Rad 732-6222
Dynabeads MyOne Invitrogen 650-01
Streptavidin C1
Qiagen MinElute PCR Purification Kit Qiagen 28004
UltraPure Agarose Invitrogen 16500500
UDP-6-N3-glucose Active Motif 55013
Enzyme
β-glucosyltransferase (β-GT) New England Biolab M0357
Equipment
Sonication device Covaris
Desktop centrifuge
Water bath Fisher Scientific
Gel running apparatus Bio-Rad
NanoDrop1000 Thermo Scientific
Labquake Tube Shaker Barnstead
Labquake Tube Shaker Thermolyne
Magnetic Separation Stand Promega Z5342
Qubit 2.0 Fluorometer Invitrogen
Reagent setup 10 X β-GT Reaction Buffer (500 mM HEPES pH 7.9, 250 mM MgCl2) 2 X Binding and washing (B&W) buffer (10 mM Tris pH 7.5, 1 mM EDTA, 2 M NaCl, 0.02% Tween 20).

References

  1. Jaenisch, R., Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. , 245-254 (2003).
  2. Ito, S. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 466, 1129-1133 (2010).
  3. Tahiliani, M. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 324, 930-935 (2009).
  4. Kriaucionis, S., Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 324, 929-930 (2009).
  5. Ko, M. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 468, 839-843 (2010).
  6. Koh, K. P. Tet1 and tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell. 8, 200-213 (2011).
  7. Iqbal, K., Jin, S. G., Pfeifer, G. P., Szabo, P. E. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proceedings of the National Academy of Sciences of the United States of America. 108, 3642-3647 (2011).
  8. Wossidlo, M. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2, 241 (2011).
  9. Gu, T. P. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 477, 606-610 (2011).
  10. Dawlaty, M. M. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell. 9, 166-175 (2011).
  11. Huang, Y. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One. 5, e8888 (2010).
  12. Song, C. X. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29, 68-72 (2011).
  13. Pastor, W. A. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 473, 394-397 (2011).
  14. Matarese, F., Pau, C. a. r. r. i. l. l. o. -. d. e. S. a. n. t. a., E, ., Stunnenberg, H. G. 5-Hydroxymethylcytosine: a new kid on the epigenetic block. Mol. Syst. Biol. 7, 562 (2011).
  15. Szwagierczak, A., Bultmann, S., Schmidt, C. S., Spada, F., Leonhardt, H. Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res. 38, 181 (2010).
  16. Terragni, J., Bitinaite, J., Zheng, Y., Pradhan, S. Biochemical characterization of recombinant β-glucosyltransferase and analysis of global 5-hydroxymethylcytosine in unique genomes. 생화학. , (2012).
  17. Rusmintratip, V., Sowers, L. C. An unexpectedly high excision capacity for mispaired 5-hydroxymethyluracil in human cell extracts. Proc. Natl. Acad. Sci. U.S.A. 97, 14183-14187 (2000).
  18. Globisch, D. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One. 5, e15367 (2010).
  19. Yildirim, O. Mbd3/NURD Complex Regulates Expression of 5-Hydroxymethylcytosine Marked Genes in Embryonic Stem Cells. Cell. 147, 1498-1510 (2011).
  20. Szulwach, K. E. Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet. 7, e1002154 (2011).
  21. Szulwach, K. E. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 14, 1607-1616 (2011).
check_url/kr/4441?article_type=t

Play Video

Cite This Article
Li, Y., Song, C., He, C., Jin, P. Selective Capture of 5-hydroxymethylcytosine from Genomic DNA. J. Vis. Exp. (68), e4441, doi:10.3791/4441 (2012).

View Video