Summary

डीएनए Origami से एक जैव संवेदनशील रोबोट डिजाइनिंग

Published: July 08, 2013
doi:

Summary

डीएनए origami डीएनए अणु की आत्म विधानसभा प्रोग्रामिंग द्वारा सटीक वस्तुओं nanoscale fabricating के लिए एक शक्तिशाली तरीका है. यहाँ, हम डीएनए origami जैविक संकेतों संवेदन और आकार बाद में एक वांछित प्रभाव को रिले, स्थानांतरण से जवाब देने में सक्षम एक रोबोट रोबोट डिजाइन करने के लिए उपयोग किया जा सकता है वर्णन कैसे.

Abstract

Nucleic acids are astonishingly versatile. In addition to their natural role as storage medium for biological information1, they can be utilized in parallel computing2,3 , recognize and bind molecular or cellular targets4,5 , catalyze chemical reactions6,7 , and generate calculated responses in a biological system8,9. Importantly, nucleic acids can be programmed to self-assemble into 2D and 3D structures10-12, enabling the integration of all these remarkable features in a single robot linking the sensing of biological cues to a preset response in order to exert a desired effect.

Creating shapes from nucleic acids was first proposed by Seeman13, and several variations on this theme have since been realized using various techniques11,12,14,15 . However, the most significant is perhaps the one proposed by Rothemund, termed scaffolded DNA origami16. In this technique, the folding of a long (>7,000 bases) single-stranded DNA ‘scaffold’ is directed to a desired shape by hundreds of short complementary strands termed ‘staples’. Folding is carried out by temperature annealing ramp. This technique was successfully demonstrated in the creation of a diverse array of 2D shapes with remarkable precision and robustness. DNA origami was later extended to 3D as well17,18 .

The current paper will focus on the caDNAno 2.0 software19 developed by Douglas and colleagues. caDNAno is a robust, user-friendly CAD tool enabling the design of 2D and 3D DNA origami shapes with versatile features. The design process relies on a systematic and accurate abstraction scheme for DNA structures, making it relatively straightforward and efficient.

In this paper we demonstrate the design of a DNA origami nanorobot that has been recently described20. This robot is ‘robotic’ in the sense that it links sensing to actuation, in order to perform a task. We explain how various sensing schemes can be integrated into the structure, and how this can be relayed to a desired effect. Finally we use Cando21 to simulate the mechanical properties of the designed shape. The concept we discuss can be adapted to multiple tasks and settings.

Protocol

हम इस पत्र में डिजाइन करेंगे रोबोट एक चुना लक्ष्य कोशिका की सतह पर रिसेप्टर्स करने के लिए बाध्य करने के लिए एक मालवाहक सी उपलब्ध बनाने के द्वारा एक प्रोटीन पी का जवाब. रोबोट चित्र 1 में दिखा…

Representative Results

आंकड़े 1-25 डिजाइन की प्रक्रिया कदम दर कदम दिखा caDNAno 2.0 इंटरफेस के स्क्रीनशॉट रहे हैं. आकार के पार अनुभाग पहली पाड़ किनारा टुकड़े और पूरे पाड़ पथ (चित्रा 7) के पूरा होने से स्वत: इसके अलावा, इसके ?…

Discussion

डीएनए origami हमें nanoscale पर मनमाना सुविधाओं के साथ सही ढंग से परिभाषित वस्तुओं के निर्माण के लिए सक्षम बनाता है. एक महत्वपूर्ण अगले कदम इन डिजाइनों में समारोह का एकीकरण किया जाएगा. कई अनुप्रयोगों और चुनौतियो…

Disclosures

The authors have nothing to disclose.

Acknowledgements

लेखकों अत्यंत मूल्यवान विचार विमर्श और सलाह है, और उपयोगी विचार विमर्श और काम के लिए Bachelet प्रयोगशाला के सभी सदस्यों के लिए एस डगलस धन्यवाद देता हूँ. इस काम के बार इलान विश्वविद्यालय में नैनो और उन्नत सामग्री की लाइफ साइंसेज और संस्थान के संकाय से अनुदान द्वारा समर्थित है.

Materials

Name of Reagent/Material Company Catalog Number Comments
Autodesk Maya 2012 Autodesk A student/academic account needs to be created first (see platform-specific instructions in http://cadnano.org)
caDNAno 2.0 (software) (Open source) Software for the design of DNA origami structures http://cadnano.org
Cando (webpage) (Open source) Webpage running a simulator of DNA origami shapes http://cando-dna-origami.org

References

  1. Watson, J. D., Crick, F. H. Genetical implications of the structure of deoxyribonucleic acid. Nature. 171, 964-967 (1953).
  2. Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science. 266, 1021-1024 (1994).
  3. Qian, L., Winfree, E., Bruck, J. Neural network computation with DNA strand displacement cascades. Nature. 475, 368-372 (2011).
  4. Ellington, A. D., Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 346, 818-822 (1990).
  5. Tang, Z., Parekh, P., Turner, P., Moyer, R. W., Tan, W. Generating aptamers for recognition of virus-infected cells. Clin. Chem. 55, 813-822 (2009).
  6. Baskerville, S., Bartel, D. P. A ribozyme that ligates RNA to protein. Proc. Natl. Acad. Sci. U.S.A. 99, 9154-9159 (2002).
  7. Bartel, D. P., Szostak, J. W. Isolation of new ribozymes from a large pool of random sequences [see comment]. Science. 261, 1411-1418 (1993).
  8. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E. An autonomous molecular computer for logical control of gene expression. Nature. 429, 423-429 (2004).
  9. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., Benenson, Y. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science. 333, 1307-1311 (2011).
  10. Rothemund, P. W., Papadakis, N., Winfree, E. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, e424 (2004).
  11. Chen, J. H., Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature. 350, 631-633 (1991).
  12. He, Y., et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature. 452, 198-201 (2008).
  13. Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237-247 (1982).
  14. Wei, B., Dai, M., Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature. 485, 623-626 (2012).
  15. Yin, P., et al. Programming DNA tube circumferences. Science. 321, 824-826 (2008).
  16. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature. 440, 297-302 (2006).
  17. Dietz, H., Douglas, S. M., Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science. 325, 725-730 (2009).
  18. Douglas, S. M., et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature. 459, 414-418 (2009).
  19. Douglas, S. M., et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001-5006 (2009).
  20. Douglas, S. M., Bachelet, I., Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science. 335, 831-834 (2012).
  21. Castro, C. E., et al. A primer to scaffolded DNA origami. Nature Methods. 8, 221-229 (1038).
  22. Ke, Y., et al. Multilayer DNA origami packed on a square lattice. Journal of the American Chemical Society. 131, 15903-15908 (2009).
  23. Mallikaratchy, P. Using aptamers evolved from cell-SELEX to engineer a molecular delivery platform. Chem. Commun. (Camb). , 3056-3058 (2009).
  24. Hamad-Schifferli, K., Schwartz, J. J., Santos, A. T., Zhang, S., Jacobson, J. M. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature. 415, 152-155 (2002).
check_url/kr/50268?article_type=t

Play Video

Cite This Article
Ben-Ishay, E., Abu-Horowitz, A., Bachelet, I. Designing a Bio-responsive Robot from DNA Origami. J. Vis. Exp. (77), e50268, doi:10.3791/50268 (2013).

View Video