Summary

न्यूरोइमेजिंग डेटा का उपयोग कर रोग से संबंधित स्थानिक सहप्रसरण पैटर्न की पहचान

Published: June 26, 2013
doi:

Summary

प्रमुख घटक विश्लेषण (पीसीए) सहित बहुभिन्नरूपी तकनीक कार्यात्मक मस्तिष्क छवियों में क्षेत्रीय परिवर्तन के हस्ताक्षर पैटर्न की पहचान करने के लिए इस्तेमाल किया गया है. हम neurodegenerative विकारों के निदान, रोग प्रगति का मूल्यांकन, और रोगी आबादी में उपचार के प्रभाव का उद्देश्य मूल्यांकन के लिए प्रतिलिपि प्रस्तुत करने योग्य नेटवर्क बायोमार्कर की पहचान करने के लिए एक कलन विधि विकसित की है.

Abstract

The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson’s Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.

Introduction

Neurodegenerative विकारों बड़े पैमाने पर स्थानीय बनाना और मस्तिष्क चयापचय की असामान्यताओं के साथ ही क्षेत्रीय बातचीत 17 अध्ययन है कि गैर आनुमानिक तरीकों यों कि तकनीक का उपयोग कर अध्ययन किया गया है. ऐसे प्रमुख घटक विश्लेषण (पीसीए) 1,2,4,18 और स्वतंत्र घटक विश्लेषण (आईसीए) 19,20, साथ ही इस तरह के कम से कम आंशिक चौकों (PLS) 21 और विहित क्रमसूचक प्रवृत्तियों के रूप में निगरानी की तकनीक के रूप में डेटा संचालित बहुभिन्नरूपी विश्लेषणात्मक रणनीतियों variates विश्लेषण (ORT / CVA) 22 विशेषता पैटर्न या अंतर्संबंधित गतिविधि के "नेटवर्क" प्रकट कर सकते हैं. विशेष रूप से बहुभिन्नरूपी प्रक्रियाओं, छोटा subprofile मॉडल (एसएसएम) की मूल बातें 1,2,4-6,18 पहले जौव 3 में वर्णित किया गया है. इस पीसीए आधारित दृष्टिकोण मूल रूप से मस्तिष्क में रक्त प्रवाह और चयापचय acq के स्थिर राज्य ही मात्रा छवियों में मस्तिष्क क्षेत्रों के बीच असामान्य कार्यात्मक सहप्रसरण संबंधों की जांच करने के लिए विकसित किया गया थाउच्च संकेत करने वाली शोर विशेषताओं दिखा रहे हैं कि इस तरह के पीईटी और SPECT के तौर तरीकों के आराम की स्थिति में uired. रोग विशेष एसएसएम पैटर्न सामान्य विषयों 7,16 की तुलना में और एक नेटवर्क प्रक्रिया या कई जटिल असामान्य कार्यों 23 आत्मसात प्रतिबिंबित कर सकते हैं रोगियों में क्षेत्रीय स्थलाकृति में समग्र मतभेद को दर्शाते हैं कि इमेजिंग बायोमार्कर हैं. मेटाबोलिक सहप्रसरण पैटर्न नेटवर्क मस्तिष्क सामान्य और रोग समूहों के बीच भेद और रोग की गंभीरता के नैदानिक ​​रेटिंग के साथ सहसंबंधी कि नेटवर्क आधारित उपाय प्रदान कर सकते हैं कि अभिव्यक्ति मान (विषय स्कोर) के साथ जुड़े रहे हैं. आमतौर पर, इस तरह के पैटर्न के लिए विषय के स्कोर रोग प्रगति के साथ बढ़ाने के लिए और भी लक्षण उभरने 14,24 से पहले व्यक्त किया जा सकता है. दरअसल, रोग से संबंधित नेटवर्क बायोमार्कर ऐसे पार्किंसंस रोग 10 (पीडी), Huntington रोग 25 (एचडी), और अल्जाइमर रोग के रूप में 8 neurodegenerative विकारों के लिए किया गया विशेषता है </> (ई.) समर्थन. महत्वपूर्ण बात है, रोग से संबंधित चयापचय topographies भी ऐसे कई सिस्टम शोष (एमएसए) और प्रगतिशील supranuclear पक्षाघात (पीएसपी) के रूप में असामान्य parkinsonian आंदोलन विकारों के लिए पहचान की गई है. इन नमूनों 12,13,26 चिकित्सकीय समान "हमशक्ल" सिंड्रोम के साथ व्यक्तियों की विभेदक निदान के लिए संगीत कार्यक्रम में इस्तेमाल किया गया है.

इसके विपरीत, ठेठ fMRI voxel आधारित univariate तरीकों अलग मस्तिष्क समूहों में रोगियों और नियंत्रण के बीच मतभेद के महत्व का आकलन करें. हाल ही में, के तरीकों के विभिन्न परिभाषित मस्तिष्क क्षेत्रों 27-29 के बीच कार्यात्मक कनेक्टिविटी को मापने के लिए विकसित किया गया है. कार्यात्मक कनेक्टिविटी की इस परिभाषा का विषय है और इस क्षेत्र के आंतरिक स्थानिक वितरित मस्तिष्क नेटवर्क क्षेत्रों 1,2,23,30 के पार के अनुभागीय इंटरकनेक्टिविटी को संदर्भित करता है कि मूल एसएसएम / पीसीए अवधारणा से विशेष बातचीत और भटक के लिए प्रतिबंधित है. उनके लाभ, एमआरआई प्लेटफॉर्म एक के लिएफिर आसानी से स्थापित किया, व्यापक रूप से उपलब्ध है, गैर इनवेसिव और आम तौर पर हाल ही में साहित्य में वर्णित संभावित तरीके की एक लहर में जिसके परिणामस्वरूप ऐसी पीईटी या SPECT रूप में पारंपरिक radiotracer इमेजिंग तौर तरीकों की तुलना में कम स्कैनिंग के समय की आवश्यकता है. हालांकि, जिसके परिणामस्वरूप समय पर निर्भर fMRI के संकेत स्थानीय तंत्रिका गतिविधि 31,32 के अप्रत्यक्ष उपाय प्रदान करते हैं. नियोजित आम तौर पर जटिल विश्लेषणात्मक एल्गोरिदम डेटासेट के बड़े आकार, fMRI के संकेतों में निहित शारीरिक शोर है, साथ ही विषयों और क्षेत्रों 19,23 के बीच मौजूद है कि मस्तिष्क गतिविधि में उच्च परिवर्तनशीलता द्वारा सीमित किया गया है. मस्तिष्क संगठन के बारे में रोचक जानकारी fMRI, "नेटवर्क" के गुणों से अनुमान लगाया जा सकता है, वे विश्वसनीय रोग बायोमार्कर के रूप में इस्तेमाल किया जा करने के लिए पर्याप्त रूप से स्थिर नहीं किया गया है. इसके अलावा, जिसके परिणामस्वरूप नेटवर्क topographies ऐसे एसएसएम / पीसीए के रूप में स्थापित कार्यात्मक इमेजिंग के तरीके का उपयोग पहचान उन लोगों के लिए यह जरूरी नहीं के बराबर हैं. वें के लिएई सबसे अधिक हिस्सा है, जिसके परिणामस्वरूप fMRI के topographies के पार सत्यापन कठोर एकल मामलों से भावी स्कैन डेटा में निकाली गई पैटर्न का सफल आगे आवेदन के कुछ उदाहरणों के साथ कमी की गई है.

पीसीए सहप्रसरण विश्लेषण का एक लाभ यह है कि पहले कुछ प्रमुख घटकों में डेटा भिन्नता के सबसे महत्वपूर्ण स्रोतों की पहचान करने के लिए अपनी क्षमता में निहित है, लेकिन प्रमुख eigenvectors बल्कि वास्तविक आंतरिक नेटवर्क प्रतिक्रिया से यादृच्छिक शोर कारकों का प्रतिनिधित्व करते हैं अगर यह अप्रभावी है. केवल पहले कुछ eigenvectors चयन और रोगी बनाम सामान्य नियंत्रण के स्कोर में महत्वपूर्ण अंतर पता चलता है कि उन लोगों को सीमित करके, हम बहुत शोर तत्वों के प्रभाव को कम. हालांकि, यहां वर्णित बुनियादी दृष्टिकोण के लिए, इन उपायों से नीचे वर्णित तौर तरीकों के अपवाद के साथ एक ठेठ fMRI डाटासेट में मजबूत estimators उत्पन्न करने के लिए पर्याप्त नहीं हो सकता.

इस प्रकार, क्षेत्रीय जी के स्थिर सीधा संबंध की वजहlucose चयापचय और synaptic गतिविधि 33, इस पद्धति बाकी राज्य FDG पीईटी डेटा का विश्लेषण करने के लिए मुख्य रूप से लागू किया गया है. हालांकि, इस्तेमाल किया गया है, मस्तिष्क रक्त के प्रवाह (CBF) बारीकी से आराम की स्थिति 10,11,34, SPECT 35,36 और अधिक हाल ही में धमनी स्पिन लेबलिंग (एएसएल) एमआरआई छिड़काव इमेजिंग तरीकों 37,38 में चयापचय गतिविधि के लिए युग्मित है कि दी व्यक्तिगत मामलों में असामान्य चयापचय गतिविधि का आकलन करने के लिए. यही आराम कर राज्य fMRI (rsfMRI) के साथ विश्वसनीय स्थानिक सहप्रसरण पैटर्न की व्युत्पत्ति के रूप में पहले 31,32 सीधा नहीं उल्लेख किया है, ने कहा. फिर भी, पीडी रोगियों और नियंत्रण विषयों से rsfMRI डेटा की प्रारंभिक एसएसएम / पीसीए विश्लेषण रोग से संबंधित पैटर्न के बीच कुछ स्थलाकृतिक homologies बोल्ड fMRI 39,40 के दो तौर तरीकों, पीईटी और कम आवृत्ति उतार चढ़ाव के आयाम (ALFF) का उपयोग पहचान से पता चला है . अन्त में, हम भी इस दृष्टिकोण voxel आधारित Morpho में सफलतापूर्वक लागू किया गया है कि ध्यान देंउम्र से संबंधित मात्रा घटाने के साथ और एक ही विषयों के 43 में VBM और साइन पैटर्न की आगे की तुलना में जुड़े विशिष्ट स्थानिक सहप्रसरण पैटर्न खुलासा metry (VBM) संरचनात्मक एमआरआई डेटा 41,42,. विभिन्न विश्लेषणात्मक दृष्टिकोण और इमेजिंग प्लेटफार्मों का उपयोग एसएसएम / पीसीए स्थानिक सहप्रसरण topographies और पहचान अनुरूप मस्तिष्क नेटवर्क के बीच संबंध चल रही जांच का विषय है.

Protocol

1. डेटा संग्रह और Preprocessing एसएसएम / पीसीए विधि विभिन्न स्रोतों और तौर तरीकों से प्राप्त एकल मात्रा छवियों के लिए लागू किया जा सकता है. विशेष रूप से, चयापचय की साइट पर पीईटी इमेजिंग के लिए, जैसे [18 एफ] के ?…

Representative Results

बहुभिन्नरूपी एसएसएम / पीसीए विश्लेषण का एक साधारण आवेदन पीडी के लिए एक न्यूरोइमेजिंग biomarker के पैटर्न प्राप्त करने के लिए नीचे सचित्र है. दस में से पीईटी FDG छवियों चिकित्सकीय चर रोगग्रस्त अवधि के पीडी रोग?…

Discussion

एसएसएम / पीसीए मॉडल मूल रूप Moeller एट अल द्वारा प्रस्तुत किया. 4 न्यूरोइमेजिंग डेटा के विश्लेषण के लिए एक सरल और मजबूत तकनीक में 1-3 विकसित किया गया है. हालांकि, हम यहाँ और पिछले प्रकाशनों 5-7,10 मे?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

यह काम राष्ट्रीय मस्तिष्क संबंधी विकार के संस्थान और स्ट्रोक से डे को अनुदान सं P50NS071675 (चिकित्सा अनुसंधान के लिए Feinstein संस्थान में पार्किंसंस रोग अनुसंधान में उत्कृष्टता के मॉरिस लालकृष्ण Udall सेंटर) द्वारा समर्थित किया गया था. सामग्री केवल लेखकों की ज़िम्मेदारी है और जरूरी राष्ट्रीय मस्तिष्क संबंधी विकार के संस्थान और स्ट्रोक या स्वास्थ्य के राष्ट्रीय संस्थान के आधिकारिक विचार का प्रतिनिधित्व नहीं करता. प्रायोजक, अध्ययन डिजाइन, संग्रह, विश्लेषण और डेटा की व्याख्या में एक भूमिका निभा रिपोर्ट का लेखन या प्रकाशन के लिए कागज प्रस्तुत करने के निर्णय में नहीं था.

Materials

Name of Equipment Company Catalog Number Comments
Image Acquisition
PET Scanner GE Medical Systems GE Advance Any PET, PET/CT and PET/MRI Scanners from GE, Siemens and Philips
PC Workstations Lenovo Any http://www.lenovo.com/us/en/
Radiopharmaceuticals
[18F]-fluorodeoxyglucose Feinstein Institute for Medical Research Routine Production Also distributed by Cardinal Health http://www.cardinal.com/
Software
ScanVP Feinstein Institute for Medical Research Version 5.9.1, Version 6.2, To be released www.feinsteinneuroscience.org
SPM The UCL Institute of Neurology spm99-spm8 http://www.fil.ion.ucl.ac.uk/spm
Windows Microsoft Any
Matlab Mathworks Matlab Version 7.0, 7.3 http://www.mathworks.com/
JMP SAS Version 5 http://www.jmp.com/

References

  1. Moeller, J. R., Strother, S. C. A regional covariance approach to the analysis of functional patterns in positron emission tomographic data. J. Cereb. Blood Flow Metab. 11 (2), 121-135 (1991).
  2. Alexander, G. E., Moeller, J. R. Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: A principal component approach to modeling brain function in disease. Hum. Brain Mapp. 2, 1-16 (1994).
  3. Habeck, C. G. Basics of multivariate analysis in neuroimaging data. J. Vis. Exp. (41), e1988 (2010).
  4. Moeller, J. R., Strother, S. C., Sidtis, J. J., Rottenberg, D. A. Scaled subprofile model: a statistical approach to the analysis of functional patterns in positron emission tomographic data. J. Cereb. Blood Flow Metab. 7 (5), 649-658 (1987).
  5. Spetsieris, P. G., Eidelberg, D. Scaled subprofile modeling of resting state imaging data in Parkinson’s disease: methodological issues. Neuroimage. 54 (4), 2899-2914 (2011).
  6. Dhawan, V., Tang, C. C., Ma, Y., Spetsieris, P., Eidelberg, D. Abnormal network topographies and changes in global activity: Absence of a causal relationship. Neuroimage. 63 (4), 1827-1832 (2012).
  7. Eidelberg, D. Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci. 32 (10), 548-557 (2009).
  8. Habeck, C., Foster, N. L., et al. Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease. Neuroimage. 40 (4), 1503-1515 (2008).
  9. Efron, B., Tibshirani, R. . An introduction to the bootstrap. , (1994).
  10. Ma, Y., Tang, C., Spetsieris, P., Dhawan, V., Eidelberg, D. Abnormal metabolic network activity in Parkinson’s disease: test-retest reproducibility. J. Cereb. Blood Flow & Metab. 27 (3), 597-605 (2007).
  11. Ma, Y., Eidelberg, D. Functional imaging of cerebral blood flow and glucose metabolism in Parkinson’s disease and Huntington’s disease. Mol. Imaging Biol. 9 (4), 223-233 (2007).
  12. Tang, C. C., Poston, K. L., et al. Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol. 9 (2), 149-158 (2010).
  13. Spetsieris, P. G., Ma, Y., Dhawan, V., Eidelberg, D. Differential diagnosis of parkinsonian syndromes using PCA-based functional imaging features. Neuroimage. 45 (4), 1241-1252 (2009).
  14. Tang, C. C., Poston, K. L., Dhawan, V., Eidelberg, D. Abnormalities in metabolic network activity precede the onset of motor symptoms in Parkinson’s disease. J. Neurosci. 30 (3), 1049-1056 (2010).
  15. Mure, H., Hirano, S., et al. Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. Neuroimage. 54 (2), 1244-1253 (2011).
  16. Niethammer, M., Eidelberg, D. Metabolic brain networks in translational neurology: concepts and applications. Ann. Neurol. , (2012).
  17. Petersson, K. M., Nichols, T. E., Poline, J. B. Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354 (1387), 1239-1260 (1999).
  18. Habeck, C., Stern, Y. Multivariate data analysis for neuroimaging data: overview and application to Alzheimer’s disease. Cell Biochem. Biophys. 58 (2), 53-67 (2010).
  19. McKeown, M. J., Hansen, L. K., Sejnowsk, T. J. Independent component analysis of functional MRI: what is signal and what is noise. Current Opinion in Neurobiology. 13 (5), 620-629 (2003).
  20. Stone, J. V. Independent component analysis: an introduction. Trends Cogn. Sci. 6 (2), 59-64 (2002).
  21. McIntosh, A. R., Bookstein, F. L., Haxby, J. V., Grady, C. L. Spatial pattern analysis of functional brain images using partial least squares. Neuroimage. 3 (3 Pt. 1), 143-157 (1996).
  22. Habeck, C., Krakauer, J. W., et al. A new approach to spatial covariance modeling of functional brain imaging data: ordinal trend analysis. Neural Comput. 17 (7), 1602-1645 (2005).
  23. Habeck, C., Moeller, J. R. Intrinsic functional-connectivity networks for diagnosis: just beautiful pictures. Brain Connect. 1 (2), 99-103 (2011).
  24. Huang, C., Tang, C., et al. Changes in network activity with the progression of Parkinson’s disease. Brain. 130, 1834-1846 (2007).
  25. Feigin, A., Tang, C., et al. Thalamic metabolism and symptom onset in preclinical Huntington’s disease. Brain. 130, 2858-2867 (2007).
  26. Poston, K. L., Tang, C. C., et al. Network correlates of disease severity in multiple system atrophy. Neurology. 78 (16), 1237-1244 (2012).
  27. Biswal, B., Yetkin, F. Z., Haughton, V. M., Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 34 (4), 537-541 (1995).
  28. Greicius, M. D., Krasnow, B., Reiss, A. L., Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America. 100 (1), 253-258 (2003).
  29. Friston, K. J., Frith, C. D., Liddle, P. F., Frackowiak, R. S. Functional connectivity: the principal component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 13, 5-14 (1993).
  30. Strother, S. C., Kanno, I., Rottenberg, D. A. Commentary and opinion: I. Principal component analysis, variance partitioning, and “functional connectivity”. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism. 15 (3), 353-360 (1995).
  31. Ekstrom, A. How and when the fMRI BOLD signal relates to underlying neural activity: the danger in dissociation. Brain Research Reviews. 62 (2), 233-244 (2010).
  32. Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature. 453 (7197), 869-878 (2008).
  33. Lin, T. P., Carbon, M., et al. Metabolic correlates of subthalamic nucleus activity in Parkinson’s disease. Brain. 131 (Pt. 5), 1373-1380 (2008).
  34. Hirano, S., Asanuma, K., et al. Dissociation of metabolic and neurovascular responses to levodopa in the treatment of Parkinson’s disease. J. Neurosci. 28 (16), 4201-4209 (2008).
  35. Feigin, A., Antonini, A., et al. Tc-99m ethylene cysteinate dimer SPECT in the differential diagnosis of parkinsonism. Mov. Disord. 17 (6), 1265-1270 (2002).
  36. Eckert, T., Van Laere, K., et al. Quantification of Parkinson’s disease-related network expression with ECD SPECT. Eur. J. Nucl. Med. Mol. Imaging. 34 (4), 496-501 (2007).
  37. Ma, Y., Huang, C., et al. Parkinson’s disease spatial covariance pattern: noninvasive quantification with perfusion MRI. J. Cereb. Blood Flow Metab. 30 (3), 505-509 (2010).
  38. Melzer, T. R., Watts, R., et al. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson’s disease. Brain. 134 (Pt. 3), 845-855 (2011).
  39. Skidmore, F., Spetsieris, P., et al. Diagnosis of Parkinson’s disease using resting state fMRI. , LB22 (2011).
  40. Peng, S., Wu, T., et al. A comparison study of Parkinson’s disease-related patterns between FDG PET and fMRI at rest state. Neuroimage. 61, 5610 (2012).
  41. Brickman, A. M., Habeck, C., Zarahn, E., Flynn, J., Stern, Y. Structural MRI covariance patterns associated with normal aging and neuropsychological functioning. Neurobiol. Aging. 28 (2), 284-295 (2007).
  42. Bergfield, K. L., Hanson, K. D., et al. Age-related networks of regional covariance in MRI gray matter: reproducible multivariate patterns in healthy aging. Neuroimage. 49 (2), 1750-1759 (2010).
  43. Steffener, J., Brickman, A. M., Habeck, C. G., Salthouse, T. A. Cerebral blood flow and gray matter volume covariance patterns of cognition in aging. Human Brain Mapping. , (2012).
  44. Cangelosi, R., Goriely, A. Component retention in principal component analysis with application to cDNA microarray data. Biol. Direct. 2, 2 (2007).
  45. Akaike, H. A new look at the statistical model identification. IEEE Transactions on Automatic Control. 19 (6), 716-723 (1974).
  46. Eidelberg, D., Moeller, J. R., et al. Assessment of disease severity in parkinsonism with fluorine-18-fluorodeoxyglucose and PET. J. Nucl. Med. 36 (3), 378-383 (1995).
  47. Ma, Y., Tang, C., Moeller, J. R., Eidelberg, D. Abnormal regional brain function in Parkinson’s disease: truth or fiction. Neuroimage. 45 (2), 260-266 (2009).
  48. Habeck, C., Steffener, J., Rakitin, B., Stern, Y. Can the default-mode network be described with one spatial-covariance network. Brain Res. 1468, 38-51 (2012).
  49. Joliffe, I. T. Principal Components Analysis. Springer Series in Statistics. , (2002).
  50. Limpert, E., Stahel, W. A., Abbt, M. Log-normal distributions across the sciences: keys and clues. BioScience. 51 (5), 341-352 (2001).
  51. Huang, C., Mattis, P., et al. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology. 70 (16 Pt. 2), 1470-1477 (2008).
  52. Mattis, P. J., Tang, C. C., Ma, Y., Dhawan, V., Eidelberg, D. Network correlates of the cognitive response to levodopa in Parkinson disease. Neurology. 77 (9), 858-865 (2011).
  53. Feigin, A., Kaplitt, M. G., et al. Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson’s disease. Proc. Natl. Acad. Sci. U.S.A. 104 (49), 19559-19564 (2007).
  54. Mure, H., Tang, C. C., et al. Improved sequence learning with subthalamic nucleus deep brain stimulation: evidence for treatment-specific network modulation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 32 (8), 2804-2813 (2012).
check_url/kr/50319?article_type=t

Play Video

Cite This Article
Spetsieris, P., Ma, Y., Peng, S., Ko, J. H., Dhawan, V., Tang, C. C., Eidelberg, D. Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data. J. Vis. Exp. (76), e50319, doi:10.3791/50319 (2013).

View Video