Summary

在原位横向腹直肌肌皮瓣:肌缺血再灌注损伤模型大鼠

Published: June 08, 2013
doi:

Summary

广泛采用游离组织移植重建手术,肿瘤切除术和创伤后恢复形式和功能。手术前预处理这个组织可能提高的结果。本文介绍了一种<em在原位</em>横向腹直肌肌皮瓣(TRAM)大鼠作为测试预处理策略的一种手段。

Abstract

游离组织移植重建手术的金标准,不服从当地期权或那些需要的复合组织修复缺陷。缺血再灌注损伤(IRI)是一个已知的部分游离皮瓣失败的原因,有没有有效的治疗方法。建立这种损伤的实验室模型可以证明均付出沉重代价财政,大型哺乳动物通常用于在所需的专业知识,技术难度,这些程序通常需要聘请一位经验丰富的microsurgeon。本出版物和视频演示的典范IRI大鼠不需要显微专长的有效利用。此程序是一个原位模型的横向腹直肌肌皮瓣(TRAM)无创伤钳是用来重现缺血再灌注损伤与此手术相关。激光多普勒成像(LDI)扫描仪是用来评估皮瓣灌注和图像处理软件,重新评估面积百分比作为一个主要的测量结果受伤的皮肤生存的Image J。

Introduction

这个协议的目的是为了展示一个可靠和可重复的模型,观察缺血再灌注损伤中游离组织移植,使介入策略进行调查。

免费组织转移被定义为一个孤立的组织块,然后由该组织自体移植吻合瓣的横断本地船只船只接收站点的血管支队。该过程被称为FTT和组织受让方简称为游离皮瓣。

游离组织移植的金标准方法用于矫正复杂的,复合的缺陷地方选择不适合或无法使用。1-4缺血再灌注损伤(IRI)是不可避免的游离组织移植,有助于襟翼失效5,6及无有效的治疗。游离皮瓣手术选修性质,允许管理pharmacologi卡尔剂对IRI的前提。

IRI结果在流经受损内皮细胞活化微循环和代谢功能障碍,毛细血管通透性增加和随后的间质水肿,炎性细胞的大量涌入,8炎性介质的释放,活性氧和补体沉积。10这个复杂的过程中缺氧和随后的再灌注损伤,最终导致细胞死亡。肌IRI模型,使预处理策略,对临床结果的有效性进行评估。最近的工作作为替代人类IRI IRI研究的动物模型验证了使用通过比较分子人类受试者中观察到的变化和现有的动物数据。10,11

大鼠横向腹直肌肌皮瓣(TRAM)于1987年在德国的12,并于1993年首次被描述13英语。这种模式得到广泛普及13-25 TRAM皮瓣的基础上深,下unipedicled 14,17-22这些研究大部分被设计成,作为一种廉价的,可靠的模型来研究不同的策略,以降低游离组织移植IRI。上腹血管蒂15-18,20-22从这些研究的数据比较复杂,通过使用不同大小的皮岛(10.5 – 30厘米2)和不同长度的术后随访(2 – 10天)。在这些研究的控制臂的平均百分比总面积皮瓣坏死是69±6.2%(平均值±SEM)。应当注意,这六个文件全部采用腹直肌血管蒂的载体,但不公开,分裂和microanastomose或钳血管。 Zhang 23所描述的真正的,自由的大鼠TRAM皮瓣,腹壁上血管的基础上的f圈提出,船舶分为肌皮瓣转移腹股沟血管microanastomosed的。这个技术难度要求microanastomosis为0.45 – 0.5毫米口径的容器。只有15和67%,这些幸存下来。23 Zhang 等人描述的模型23是人类的自由TRAM皮瓣一个很好的模型,因为它真实地反映了FTT过程中产生伤害。大鼠TRAM皮瓣的其他已发表的模型,更准确地反映带蒂TRAM在人体产生伤害,但并不能准确地反映这些瓣IRI不接受血管蒂从来没有夹紧或划分和缺血再灌注期间执行microanastomosis。该协议和视频描述IRI被复制使用microclamps的使用大鼠TRAM游离组织移植的新模式。这更忠实地复制IRI比蒂TRAM前辈的,但在技术上更容易比performi纳克microanastomosis。通过移植的研究人员已被广泛采用microclamps重新创建IRI与实体器官移植; 26-33然而,这是第一次已经描述了在大鼠TRAM皮瓣。

Protocol

所有手术是按照由英国内政部和英国爱丁堡大学的兽医服务局的指引载。 1。手术程序集的说明转变成干净的手术袍,长袍,磨砂帽和口罩。清洁所有表面手术室,包括70%的异丙醇用2%洗必泰设备。 手术前,高压灭菌器,将用于在程序中的所有手术用品和仪器。每次手术的无菌包应包括:窗帘,纱布,棉签涂药,矽胶片和手术器械,请参阅表的具体的手术材?…

Representative Results

比大动物模型大鼠模型更经济,36抗病性和基因操纵。松散的皮肤的动物,如啮齿类动物,被认为具有不同的安排相比,固定皮肤的动物如人类和猪的皮肤的血液供应。在宽松的皮肤的动物,皮肤直接皮肤血管,通过皮下脂肪相比之下覆皮肤( 图4),主要提供固定剥皮的动物派生皮肤的血液供应,通过船只,当然通过底层肌肉提供覆包膜通过肌穿孔机( 图4)。?…

Discussion

修改和故障排除

这里介绍的协议看到游离组织移植在实验系统中再现的IRI能够进一步了解这一进程,并提供了一​​种方法,调查手段,改善IRI和改善结果。这可以很容易地修改,以产生更严重的伤害,如果它的基础上不占优势,深,腹壁下带蒂或如果缺血时间增加。

技术的限制

对大鼠腹前壁有显著比大多数女性接受TRAM皮瓣乳房重建手?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这个工作是由医学研究委员会授予G1000299。

相应的作者要感谢协助在手术过程中,爱丁堡大学的加里·博思威克。

笔者想从海伦·道格拉斯和麦荣恩确认意见,并允许我们观察到其深腹壁(DIEP)皮瓣法(Canniesburn整形外科单位,格拉斯哥皇家医院,84城堡街G4 0SF,格拉斯哥,英国)。

作者还要感谢他的帮助下对这篇文章的视频在爱丁堡大学的加里·布莱基。

Materials

Name of Reagent/Material Company Catalog Number Comments
Moor LD12 laser doppler imaging scanner http://gb.moor.co.uk/product/moorldi2-laser-doppler-imager/8
Complete homeothermic blanket system with flexible probe. Small. 230 VAC, 50 Hz 507221F www.harvardapparatus.com
Graeffe forceps 0.8 mm tips curved 11052-10 2, http://www.finescience.de
Acland clamps 00398 V B-1 ‘V’ pattern clamps used on both artery and vein. http://www.merciansurgical.com/acland-clamps.pdf
Clamp applicator CAF-4 http://www.merciansurgical.com/acland-clamps.pdf
Gemini cautery unit 726067 www.harvardapparatus.com
Micro-vessel dilators 11 cm 0.3 mm tips 00124 D-5a.2 http://www.merciansurgical.com
Micro Jewellers Forceps 11cm angulated 00109 JFA-5b http://www.merciansurgical.com
Micro Jewellers Forceps 11 cm straight 00108 JF-5 http://www.merciansurgical.com
Acland Single Clamps B-1V (Pair) 396 http://www.merciansurgical.com
Micro Scissors Round Handles 15 cm Straight 67 http://www.merciansurgical.com
Iris Scissors 11.5 cm Curves EASY-CUT EA7613-11 http://www.merciansurgical.com
Mayo Scissors 14 cm Straight Chamfered Blades EASY-CUT EA7652-14 http://www.merciansurgical.com
Derf Needle Holders 12 cm TC 703DE12 http://www.merciansurgical.com
Ethilon 5-0 W1618 http://www.farlamedical.co.uk/
Vicryl rapide 6-0 W9913 http://www.millermedicalsupplies.com/
Instrapac – Adson Toothed Forceps (Extra Fine) 7973 http://www.millermedicalsupplies.com/
Castroviejo needle holders 12565-14 http://s-and-t.ne
Heat Lamp http://www.chicken-house.co.uk
Silicone sheeting 0.3 mm translucent http://www.silex.co.uk/
Image J software http://rsbweb.nih.gov/ij/
Zeiss OPMI pico http://www.zeiss.co.uk/
Operating microscope
Vet tech solution isofluorane rig http://www.vet-tech.co.uk/
Vet tech solution isofluorane rig http://www.vet-tech.co.uk/

References

  1. Wang, X., et al. Free anterolateral thigh adipofascial flap for hemifacial atrophy. Ann. Plast. Surg. 55 (6), 617-622 (2005).
  2. Eckardt, A., Fokas, K. Microsurgical reconstruction in the head and neck region: An 18-year experience with 500 consecutive cases. J. Cranio. Maxill. Surg. 31 (4), 197-201 (2003).
  3. Yazar, S., et al. Safety and reliability of microsurgical free tissue transfers in paediatric head and neck reconstruction – a report of 72 cases. J. Plast. Reconstr. Aes. 61 (7), 767-771 (2008).
  4. Blondeel, P. N., Landuyt, K. H. V., Monstrey, S. J. Surgical-technical aspects of the free diep flap for breast reconstruction. Operat. Tech. Plast. Reconstr. Surg. 6 (1), 27-37 (1999).
  5. Siemonow, M., Arslan, E. Ischaemia/reperfusion injury: A review in relation to free tissue transfers. Microsurgery. 24, 468-475 (2004).
  6. Wang, W. Z. Investigation of reperfusion injury and ischaemic preconditioning in microsurgery. Microsurgery. 29, 72-79 (2009).
  7. Rucker, M., et al. Reduction of inflammatory response in composite flap transfer by local stress conditioning-induced heat-shock protein 32. Surgery. 129 (3), 292-301 (2001).
  8. Cetinkale, O., et al. Involvement of neutrophils in ischemia-reperfusion injury of inguinal island skin flaps in rats. Plast. Reconstr. Surg. 102 (1), 153-160 (1998).
  9. Korthuis, R. J., Granger, D. N., Townsley, M. I., Taylor, A. E. The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. Circ. Res. 57 (4), 599-609 (1985).
  10. Eisenhardt, S. U., et al. Monitoring molecular changes induced by ischemia/reperfusion in human free muscle flap tissue samples. Ann. Plast. Surg. 68 (2), 202-208 (2012).
  11. Dragu, A., et al. Gene expression analysis of ischaemia and reperfusion in human microsurgical free muscle tissue transfer. J. Cell. Mol. Med. 15 (4), 983-993 (2011).
  12. Tilgner, A., Herrberger, U. [myocutaneous flap models in the rat. Anatomy, histology and preparation technic of the myocutaneous rectus abdominis flap]. Z. Versuchstierkd. 29 (5-6), 231-236 (1987).
  13. Dunn, R. M., Huff, W., Mancoll, J. The rat rectus abdominis myocutaneous flap: A true myocutaneous flap model. Ann. Plast. Surg. 31 (4), 352-357 (1993).
  14. Clugston, P. A., Perry, L. C., Fisher, J., Maxwell, G. P. A rat transverse rectus abdominis musculocutaneous flap model: Effects of pharmacological manipulation. Ann. Plast. Surg. 34 (2), 154-161 (1995).
  15. Ozgentas, H. E., Shenaq, S., Spira, M. Development of a tram flap model in the rat and study of vascular dominance. Plast. Reconstr. Surg. 94 (7), 1012-1017 (1994).
  16. Doncatto, L. F., da Silva, J. B., da Silva, V. D., Martins, P. D. Cutaneous viability in a rat pedicled tram flap model. Plast. Reconstr. Surg. 119 (5), 1425-1430 (2007).
  17. Lineaweaver, W. C., et al. Vascular endothelium growth factor, surgical delay, and skin flap survival. Ann. Surg. 239 (6), 866-873 (2004).
  18. Rezende, F. C., et al. Electroporation of vascular endothelial growth factor gene in a unipedicle transverse rectus abdominis myocutaneous flap reduces necrosis. Ann. Plast. Surg. 64 (2), 242-246 (2010).
  19. Zacchigna, S., et al. Improved survival of ischemic cutaneous and musculocutaneous flaps after vascular endothelial growth factor gene transfer using adeno-associated virus vectors. Am. J. Pathol. 167 (4), 981-991 (2005).
  20. Zhang, F., et al. Improvement of skin paddle survival by application of vascular endothelial growth factor in a rat tram flap model. Ann. Plast. Surg. 46, 314-319 (2010).
  21. Hijjawi, J., et al. Platelet-derived growth factor β, but not fibroblast growth factor 2, plasmid DNA improves survival of ischemic myocutaneous flaps. Arch. Surg. 139 (2), 142-147 (2004).
  22. Wong, M. S., et al. Basic fibroblast growth factor expression following surgical delay of rat transverse rectus abdominis myocutaneous flaps. Plast. Reconstr. Surg. 113 (7), 2030-2036 (2004).
  23. Zhang, F., et al. Microvascular transfer of the rectus abdominis muscle and myocutaneous flap in rats. Microsurgery. 14 (6), 420-423 (1993).
  24. Hallock, G. G., Rice, D. C. Comparison of tram and diep flap physiology in a rat model. Plast Reconstr Surg. 114 (5), 1179-1184 (2004).
  25. Qiao, Q., et al. Patterns of flap loss related to arterial and venous insufficiency in the rat pedicled tram flap. Annals of Plastic Surgery. 43 (2), 171 (1999).
  26. Persy, V. P., Verhulst, A., Ysebaert, D. K., De Greef, K. E., De Broe, M. E. Reduced postischemic macrophage infiltration and interstitial fibrosis in osteopontin knockout mice. Kidney Int. 63 (2), 543-553 (2003).
  27. Li, Y., et al. Overexpression of cgmp-dependent protein kinase i (pkg-i) attenuates ischemia-reperfusion-induced kidney injury. Am. J. Physiol. Ren. Physiol. 302 (5), 561-570 (2012).
  28. Hunter, J. P., et al. Effects of hydrogen sulphide in an experimental model of renal ischaemia-reperfusion injury. Brit. J. Surg. 99 (12), 1665-1671 (2012).
  29. Hamada, T., Fondevila, C., Busuttil, R. W., Coito, A. J. Metalloproteinase-9 deficiency protects against hepatic ischemia/reperfusion injury. Hepatology. 47 (1), 186-198 (2008).
  30. Duarte, S., Hamada, T., Kuriyama, N., Busuttil, R. W., Coito, A. J. Timp-1 deficiency leads to lethal partial hepatic ischemia and reperfusion injury. Hepatology. 56 (3), 1074-1085 (2012).
  31. Shen, X. D., et al. Cd154-cd40 t-cell costimulation pathway is required in the mechanism of hepatic ischemia/reperfusion injury, and its blockade facilitates and depends on heme oxygenase-1 mediated cytoprotection. Transplantation. 74 (3), 315-319 (2002).
  32. Liu, J., et al. Endoplasmic reticulum stress modulates liver inflammatory immune response in the pathogenesis of liver ischemia and reperfusion injury. Transplantation. 94 (3), 211-217 (2012).
  33. Pan, G. Z., et al. Bone marrow mesenchymal stem cells ameliorate hepatic ischemia/reperfusion injuries via inactivation of the mek/erk signaling pathway in rats. J. Surg. Res. 178 (2), 935-948 (2012).
  34. Darouiche, R. O., et al. Chlorhexidine-alcohol versus povidone-iodine for surgical-site antisepsis. New. Engl. J. Med. 362 (1), 18-26 (2010).
  35. Fukui, A., Inada, Y., Murata, K., Tamai, S. Plasmatic imbibition” in the rabbit flow-through venus flap, using horseradish peroxidase and fluoroscein. J. Reconstr. Mirosurg. 11, 255-264 (1995).
  36. Dunn, R. M., Mancoll, J. Flap models in the rat: A review and and reappraisal. Plast. Reconstr. Surg. 90 (2), 319-328 (1992).
  37. Taylor, G., Minabe, T. The angiosomes of the mammals and other vertebrates. Plast. Reconstr. Surg. 89 (2), 181-215 (1992).
  38. Taylor, G., Corlett, R., Boyd, J. The versatile deep inferior epigastric (inferior rectus abdominis) flap. Brit. J. Plast. Surg. 37 (3), 330-350 (1984).
  39. Taylor, G., Corlett, R., Boyd, J. The extended deep inferior epigastric flap: A clinical technique. Plast. Reconstr. Surg. 72 (6), 751-765 (1983).
  40. Tai, Y., Hasegawa, H. A tranverse abdominal flap for reconstruction after radical operations for recurrent breast cancer. Plast. Reconstr. Surg. 53 (1), 52-54 (1974).
  41. Scheflan, M., Dinner, M. I. The transverse abdominal island flap: Part i. Indications, contraindications, results, and complications. Ann. Plast. Surg. 10, 24-35 (1983).
  42. Tindholdt, T. T., Saidian, S., Pripp, A. H., Tonseth, K. A. Monitoring microcirculatory changes in the deep inferior epigastric artery perforator flap with laser doppler perfusion imaging. Ann. Plast. Surg. 67 (2), 139-142 (2011).
  43. Tindholdt, T. T., Saidian, S., Tonseth, K. A. Microcirculatory evaluation of deep inferior epigastric artery perforator flaps with laser doppler perfusion imaging in breast reconstruction. J. Plast. Surg. Hand. Surg. 45 (3), 143-147 (2011).
  44. Booi, D. I., Debats, I. B. J. G., Boeckx, W. D., van der Hulsi, R. R. W. J. A study of perfusion of the distal free-tram flap using laser doppler flowmetry. J. Plast. Reconstr. Aes. 61, 282-288 (2008).
  45. Hallock, G. G. Physiological studies using laser doppler flowmetry to compare blood flow to the zones of the free tram flap. Ann. Plast .Surg. 47 (3), 229-233 (2001).
  46. Collin, T. Image j for microscopy. Biotechniques. Suppl. 43 (1), 25-30 (2007).
  47. Hallock, G., Rice, D. Physiologic superiority of the anatomic dominant pedicle of the tram flap in a rat model. Plast. Reconstr. Surg. 96, 111-118 (1995).
  48. Ozmen, S., Ayhan, S., Demir, Y., Siemionow, M., Atabay, K. Impact of gradual blood flow increase on ischaemia-reperfusion injury in the rat cremaster microcirculation model. J. Plast. Reconstr. Aes. 61 (8), 939-948 (2008).
  49. Rucker, M., Vollmar, B., Roesken, F., Spitzer, W. J., Menger, M. D. Microvascular transfer-related abrogation of capillary flow motion in critically reperfused composite flaps. Brit. J. Plast Surg. 55 (2), 129-135 (2002).
  50. Rucker, M., Kadirogullari, B., Vollmar, B., Spitzer, W. J., Menger, M. D. Improvement of nutritive perfusion after free tissue transfer by local heat shock-priming-induced preservation of capillary flowmotion. J. Surg. Res. 123, 102-108 (2005).
  51. Rucker, M., et al. New model for in vivo quantification of microvascular embolization, thrombus formation, and recanalization in composite flaps. J. Surg. Res. 108 (1), 129-137 (2002).
  52. Wang, W. Z., Baynosa, R. C., Zamboni, W. A. Update on ischemia-reperfusion injury for the plastic surgeon. Plast. Reconstr. Surg. 128 (6), 685e-692e (2011).
check_url/kr/50473?article_type=t

Play Video

Cite This Article
Edmunds, M., Wigmore, S., Kluth, D. In situ Transverse Rectus Abdominis Myocutaneous Flap: A Rat Model of Myocutaneous Ischemia Reperfusion Injury. J. Vis. Exp. (76), e50473, doi:10.3791/50473 (2013).

View Video