Summary

生物传感器检测抗生素耐药金黄色葡萄球菌细菌

Published: May 08, 2013
doi:

Summary

溶解性噬菌体生物传感器和抗体有孔玻璃珠,能够区分耐甲氧西林(MRSA)和敏感的金黄色葡萄球菌细菌。在噬菌体一个石英晶体微天平传感器的表面上固定由LB膜法,担任广泛葡萄球菌探针。抗体珠认识MRSA。

Abstract

甲结构转化的裂解的噬菌体具有广泛的宿主范围的金黄色葡萄球菌菌株和青霉素结合蛋白(PBP 2a)的抗体的乳胶珠已被用于创建的生物传感器设计(MRSA)和耐甲氧西林敏感(MSSA)S歧视。金黄色葡萄球菌1,2。裂解噬菌体噬菌体球体已转换成通过用氯仿接口接触。生物传感器表面上已经移到噬菌体球体单层LB膜技术(LB)3。创建的生物传感器已经由耗散跟踪石英晶体微天平(QCM-D),以评估细菌噬菌体的相互作用的研究。细菌的旋转椭球体的相互作用导致降低了谐振频率和两个MRSA和MSSA菌株中耗散的能量增加。细菌绑定后,这些传感器被进一步暴露的青霉素结合蛋白的抗体乳胶珠秒。分析与MRSA的传感器响应PBP 2a的抗体珠;,虽然传感器与MSSA检查没有任何反应。这个实验的区别确定一个明确的耐甲氧西林敏感的之间的歧视金黄色葡萄球菌菌株。同样绑定和未绑定噬菌体表面上抑制细菌的生长,并在水中悬浮。一旦裂解噬菌体被改变成球体,他们保留自己的强有力的催化活性和大量细菌捕获能力。噬菌体和噬菌体的球状体,可以利用抗生素抗性的微生物进行测试和灭菌。其它应用可能包括利用噬菌体治疗和抗菌表面。

Introduction

耐甲氧西林金黄色葡萄球菌已被建议作为必不可少的一个因素,感染及院内爆发4-8。甲氧西林耐药的认可,常见的方式,如纸片扩散法苯唑西林琼脂屏幕测试,或肉汤稀释量身定制的培养条件下,依靠增强表达的阻力。改建包括利用苯唑西林,潜伏期为30或35°C,而不是37℃,并加入氯化钠中的生长培养基。此外,为了正确检测这些类型的技术,一个很长的潜伏期为24小时,而不是16至18小时。快速的技术鉴定耐甲氧西林的灵敏度(> 96%)的水平适当的技术,如维特克GPS-SA卡,快速ATB金黄色葡萄球菌系统,快速迈思肯面板系统包括自动稀释3-11小时后产生的结果9-11。 CRYSTAL MRSA ID系统是一种快速的方法,根据承认生长影响黄色葡萄球菌的存在下,2%NaCl和4毫克每升苯唑西林具有对氧敏感的荧光传感器。声称灵敏度范围91至100%之间,4小时后孵化12-14。这些表型的方法在其精度是有限的流行株表达异构性的影响。因此,甲氧西林耐药的确认最好的被广泛接受的方法是PCR或DNA杂交mecA基因15。然而,这种技术需要纯化的DNA,是极其敏感的各种混合物(杂质),其中包括细胞碎片16。

此外,这些技术需要很长的时间来执行。策略,以确认mecA基因的产品,蛋白PBP 2a中,可以利用,以确定电阻,并可能更可靠的标准测试技术17。

<p clas="“jove_content在”">前面已经表明,可以利用噬菌体12600作为识别探针为包括那些具有1,2,18甲氧西林耐药性的金黄色葡萄球菌菌株。在这项工作中,我们提出了一种新的技术,例如在特定的识别和检测MRSA细菌一起构象的MRSA实时确认。对于这个特定的目的S.金黄色葡萄球菌噬菌体结合蛋白单克隆抗体的广泛的主机(包括MRSA菌株)(PBP 2a的)已被使用。 PBP 2a是细胞壁蛋白,它是MRSA的抗生素的电阻率的原因。然而PBP 2a的抗体是不特定为S金黄色葡萄球菌,因为一些其他细菌的抗生素结合蛋白序列相似PBP 2a的19,20。因此在这项工作中,S.金黄色葡萄球菌噬菌体和抗PBP 2a的蛋白已被使用。为了能够开发出一种生物传感器,具体新增Cally MRSA的检测和识别设备已动用两个步骤的行动。最初的步骤使用了S。金黄色葡萄球菌噬菌体单层作为传感器探头,而第二个步骤中使用PBP 2a的特异性抗体。因此,加强一眼便认出S。金黄色葡萄球菌的细菌,其他人会敏感抗生素结合蛋白。当从两个步骤中接收到的信号是正的,则表示的特定检测MRSA。

Protocol

1。设置舞台获取型菌株S。金黄色葡萄球菌 ATCC 12600,S.金黄色葡萄球菌 ATCC 27690和枯草芽孢杆菌 ATCC 6051。耐甲氧西林菌株的金黄色葡萄球菌 – MRSA1,MRSA,MRSA,MRSA MRSA MRSA 5 13 26 34 45,MRSA,B.福氏志贺氏菌,鼠伤寒沙门氏菌 LT2, 炭疽斯特恩耶尔森氏菌enterocolotica,奇异变形杆菌,肺炎克雷伯菌 13882;裂解噬菌体12600。 获得PBP 2a的抗体乳胶?…

Representative Results

对所有测试菌株的噬菌体展示催化活性金黄色葡萄球菌 ,MRSA菌株,所指示的噬菌体斑点试验。斑块的大小一般从5毫米到15毫米不等。没有对其他测试( 表1)文化活动被发现。 一个正常的生长的影响ATCC 12600 金黄色葡萄球菌在37℃摇床培养箱在的NZY介质上显示如图1A(曲线标记的空圈)。细菌的数量增加至3.2×10 6〜4.0×10…

Discussion

这是众所周知的,细菌病原体的生物传感器探针28可以用作噬菌体。这是表明在这项工作中,可以被用来解决的老问题:快速鉴别抗生素抗性及敏感菌株的噬菌体一起与PBP 2a的抗体。

发现,但那些正常的未改性的金黄色葡萄球菌噬菌体细菌检测与QCM装置​​是不适合的,尽管它们绑定细菌。噬菌体尾部是如此之长,声波不能“达到”约束的细菌噬菌体尾结束。这种情?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

本文报道的工作的支持补助金奥本大学AUDFS的和美国空军CRADA 07-277-60MDG-01。作者在这篇文章中所表达的意见,不反映美国的空军,国防部,或美国政府的官方政策或立场。

Materials

Reagents
Phosphate buffered saline (PBS) Sigma-Aldrich, St. Louis, MO P4417
spectrophotometric-grade chloroform Sigma-Aldrich, St. Louis, MO 154733 (99.8% A.C.S.)
Hexane-Anhydrous Sigma-Aldrich, St. Louis, MO 29609-0 (95%)
Ethyl Alcohol Pharmco products Inc. Brookfield, CT 64-17-5 190 Proof
Equipment
PBP 2a antibody conjugated latex beads Denka Seiken Co., Ltd, Tokyo, Japan The MRSA-Screen test
S. aureus ATCC 12600, S. aureus ATCC 27690 and Bacillus subtilis ATCC 6051 from American Type Culture Collection (Manassas, VA);
MRSA1, MRSA 2, MRSA 5, MRSA 13, MRSA 26, MRSA 34, MRSA 45, B. anthracis Sterne, Salmonella typhimurium LT2, Shigella flexneri, Yersinia enterocolotica, Proteus mirabilis, Klebsiella pneumoniae 13882; The lytic phage 12600 The culture collection of Auburn University, Auburn, AL
Centrifuge Beckman Coulter Optima L-90K Ultra Centrifuge
KSV 2200 LB film balance KSV Chemicals, Finland
Light microscope optical system CitoViva Technology Inc., Auburn, AL
QCM-D Q-Sense AB, Västra Frölunda, Sweden E4
Scanning electron microscope (SEM) JEOL USA Inc., Peabody, MA JEOL-7000F SEM
Transmitting electron microscopy (TEM) JEOL USA Inc., Peabody, MA JEOL, JEM 2010
Stericup, Presterilized Millipore Corporation, Billerica, MA SCGPU05RE 0.22 μm, GP Express PLUS membrane
Bio-Assay dish NUNC A/S, Denmark 240835 Dimensions(mm), 245 x 245 x 25
Pipettes Gilson, Pipetman, France P100, P200, P1000
C24 Incubator Shaker New Brunswick Scientific, CT Classic C24
Gold-coated quartz pieces Auburn University, AL Homemade
Petri dishes Fisher Brand, USA 0875713 100 mmX15 mm
SterilGard III Advance The Baker Company, ME SG403
Culture Growing Flasks Corning Incorporated, NY 4995 PYREX 250 ml Erlenmeyer flasks
Optical Spectrometer Genesys 20. Thermo Spectronic, USA. 4001
Plasma Cleaner Harrick Plasma, USA PDC-32G
Millipore water purification system Millipore Direct-Q
Imaging Ellipsometer Accurion, USA nanofilm_ep3se
Software Q-Sense AB, Sweden QSoft, QTools

References

  1. Guntupalli, R., Sorokulova, I., Krumnow, A., Pustovyy, O., Olsen, E., Vodyanoy, V. Real-time optical detection of methicillin-resistant Staphylococcus aureus using lytic phage probes. Biosens. Bioelectron. 24, 151-154 (2008).
  2. Guntupalli, R., Sorokulova, I., et al. Detection and identification of methicillin resistant and sensitive strains of Staphylococcus aureus using tandem measurements. J. Microbiol. Methods. 90, 182-191 (2012).
  3. Guntupalli, R., Sorokulova, I., Long, R., Olsen, E., Neely, W., Vodyanoy, V. Phage Langmuir monolayers and Langmuir-Blodgett films. Colloids and Surfaces, B: Biointerfaces. 82, 182-189 (2011).
  4. Barie, P. S. Antibiotic-resistant gram-positive cocci: implications for surgical practice. World. J. Surg. 22, 118-126 (1998).
  5. Byun, D. E., Kim, S. H., Shin, J. H., Suh, S. P., Ryang, D. W. Molecular epidemiologic analysis of Staphylococcus aureus isolated from clinical specimens. J. Korean Med. Sci. 12, 190-198 (1997).
  6. Duan, L., Lei, H., Huang, E., Yi, G., Fan, W. Drug resistance of Staphylococcus aureus from lower respiratory tract. Zhonghua Yiyuanganranxue Zazhi. 21, 1667-1668 (2011).
  7. Giamarellou, H., Papapetropoulou, M., Daikos, G. K. Methicillin resistant’ Staphylococcus aureus infections during 1978-79: clinical and bacteriologic observations. J. Antimicrob. Chemother. 7, 649-655 (1981).
  8. Knopf, H. J. Nosocomial infections caused by multiresistant pathogens. Clinical management exemplified by multiresistant Staphylococcus aureus. Urologe A. 36, 248-254 (1997).
  9. Knapp, C. C., Ludwig, M. D., Washington, J. A. Evaluation of differential inoculum disk diffusion method and Vitek GPS-SA card for detection of oxacillin-resistant staphylococci. J. Clin. Microbiol. 32, 433-436 (1994).
  10. Struelens, M. J., Nonhoff, C., Van, D. A., Philippe Mertens, R., Serruys, E. Evaluation of rapid ATB Staph for 5-hour antimicrobial susceptibility testing of Staphylococcus aureus. J. Clin. Microbiol. 33, 2395-2399 (1995).
  11. Woods, G. L., LaTemple, D., Cruz, C. Evaluation of MicroScan rapid gram-positive panels for detection of oxacillin-resistant staphylococci. J. Clin. Microbiol. 32, 1058-1059 (1994).
  12. Knapp, C. C., Ludwig, M. D., Washington, J. A. Evaluation of BBL crystal MRSA ID system. J. Clin. Microbiol. 32, 2588-2589 (1994).
  13. Qadri, S. M., Ueno, Y., Imambaccus, H., Almodovar, E. Rapid detection of methicillin-resistant Staphylococcus aureus by Crystal MRSA ID System. J. Clin. Microbiol. 32, 1830-1832 (1994).
  14. Zambardi, G., Fleurette, J., et al. European multicentre evaluation of a commercial system for identification of methicillin-resistant Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 15, 747-749 (1996).
  15. Chambers, H. F. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin. Microbiol. Rev. 10, 781-791 (1997).
  16. Brown, D. F. J., Edwards, D. I., et al. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). J. Antimicrob. Chemother. 56, 1000-1018 (2005).
  17. Gerberding, J. L., Miick, C., Liu, H. H., Chambers, H. F. Comparison of conventional susceptibility tests with direct detection of penicillin-binding protein 2a in borderline oxacillin-resistant strains of Staphylococcus aureus. Antimicrobial Agents & Chemotherapy. 35, 2574-2579 (1991).
  18. Balasubramanian, S., Sorokulova, I. B., Vodyanoy, V. J., Simonian, A. L. Lytic phage as a specific and selective probe for detection of Staphylococcus aureus-A surface plasmon resonance spectroscopic study. Biosens. Bioelectron. 22, 948-955 (2007).
  19. Popham, D. L., Young, K. D. Role of penicillin-binding proteins in bacterial cell morphogenesis. Current Opinion in Microbiology. 6, 594-599 (2003).
  20. Wei, Y., Havasy, T., McPherson, D. C., Popham, D. L. Rod shape determination by the Bacillus subtilis class B penicillin-binding proteins encoded by pbpA and pbpH. J. Bacteriol. 185, 4717-4726 (2003).
  21. Grieco, S. H. H., Lee, S., Dunbar, W. S., MacGillivray, R. T. A., Curtis, S. B. Maximizing filamentous phage yield during computer-controlled fermentation. Bioprocess and Biosystems Engineering. 32, 773-779 (2009).
  22. Olsen, E. V., Pathirana, S. T., Samoylov, A. M., Barbaree, J. M., Chin, B. A., Neely, W. C., Vodyanoy, V. Specific and selective biosensor for Salmonella and its detection in the environment. J. Microbiol. Methods. 53, 273-285 (2003).
  23. Pathirana, S. T., Barbaree, J., Chin, B. A., Hartell, M. G., Neely, W. C., Vodyanoy, V. Rapid and sensitive biosensor for Salmonella. Biosens. Bioelectron. 15, 135-141 (2000).
  24. Sauerbrey, G. The use of quartz oscillators for weighing thin layers and for microweighing. Z. Phys. 155, 206-222 (1959).
  25. Hook, F., Rodahl, M., Brzezinski, P., Kasemo, B. Energy Dissipation Kinetics for Protein and Antibody-Antigen Adsorption under Shear Oscillation on a Quartz Crystal Microbalance. Langmuir. 14, 729-734 (1998).
  26. Griffith, J., Manning, M., Dunn, K. Filamentous bacteriophage contract into hollow spherical particles upon exposure to a chloroform-water interface. Cell. 23, 747-753 (1981).
  27. Hosseinidoust, Z., Van de Ven, T. G. M., Tufenkji, N. Bacterial Capture Efficiency and Antimicrobial Activity of Phage-Functionalized Model Surfaces. Langmuir. 27, 5472-5480 (2011).
  28. Schofield, D. A., Molineux, I. J., Westwater, C. Bioluminescent’ Reporter Phage for the Detection of Category A Bacterial Pathogens. J. Vis. Exp. (53), e2740 (2011).
  29. Voinova, M. V., Jonson, M., Kasemo, B. Missing mass” effect in biosensor’s QCM applications. Biosens. Bioelectron. 17, 835-841 (2002).
  30. Gervals, L., Gel, M., et al. Immobilization of biotinylated bacteriophages on biosensor surfaces. Sensors and Actuators. 125, 615-621 (2007).
  31. Nanduri, V., Sorokulova, I. B., Samoylov, A. M., Simonian, A. L., Petrenko, V. A., Vodyanoy, V. Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosens. Bioelectron. 22, 986-992 (2007).
  32. Sorokulova, I., Watt, J., et al. Natural biopolymer for preservation of microorganisms during sampling and storage. J. Microbiol. Methods. 88, 140-146 (2012).
  33. Sanders, E. R. Aseptic Laboratory Techniques: Plating Methods. J. Vis. Exp. (63), e3064 (2012).
check_url/kr/50474?article_type=t

Play Video

Cite This Article
Guntupalli, R., Sorokulova, I., Olsen, E., Globa, L., Pustovyy, O., Vodyanoy, V. Biosensor for Detection of Antibiotic Resistant Staphylococcus Bacteria. J. Vis. Exp. (75), e50474, doi:10.3791/50474 (2013).

View Video