Summary

该<em>在OVO</em> CAM作为一个肉瘤Xenograftmodel的检测

Published: July 17, 2013
doi:

Summary

该<em>在OVO</em>绒毛尿囊膜(CAM)接枝源性肉瘤的新鲜肿瘤组织中,其单细胞悬液,并永久和瞬态荧光标记的建立肉瘤细胞株。该模型用于研究移植(活力,Ki67的增殖指数,坏死,浸润)和主机(成纤维细胞浸润,血管长入)的行为。

Abstract

肉瘤是一种非常罕见的疾病,在本质上是异质的,都阻碍了发展的新疗法。肉瘤患者的理想人选后分层的个性化医学,解释目前在开发这种疾病的一个重现性好,成本低的异种移植模型的兴趣。鸡胚绒毛尿囊膜,是一种天然的免疫缺陷宿主能够维持嫁接的组织和细胞,没有种属特异性的限制。此外,它很容易访问,操纵和使用光学和荧光立体显微镜成像。组织学进一步允许异型细胞相互作用的详细分析。

该协议详细描述了OVO绒毛尿囊膜移植肉瘤派生的新鲜肿瘤组织,其单细胞悬液,和永久和瞬态荧光标记的建立肉瘤细胞株(系Saos-2和SW1353)。小鸡存活大鼠上课是高达75%。该模型用于研究移植(活力,Ki67的增殖指数,坏死,浸润)和主机(成纤维细胞浸润,血管长入)的行为。对于单细胞悬液的本地化嫁接,ECM凝胶提供了显着的优势,在惰性容器材料。 Ki67增殖指数的距离的凸轮表面的细胞和CAM上,后者确定的治疗产品的另外的时间框架中的应用的持续时间有关。

Introduction

肉瘤是一种罕见的肿瘤治疗抵抗1,2由于死亡率高的结缔组织。患者的生存率进展受阻低的年发病,其广泛的多样性,以及肉瘤细胞的事实,据报道, 在体外难以培养3,4。

使用培养细胞的临床前治疗评价已经表明,新的,显然是在体外的活性分子并不总是反映在临床上的结果。此外,揭示了基因表达阵列的基因畸变并不总是与个别病人5-7的肿瘤行为特征。为了试图解决这些问题,已经获得了个性化医疗的重要性,这也反映在增加搜索异种移植模型8-12。

在体内试验中的一种反映复杂的相互作用的优点是与c的相关关系在固体肿瘤细胞与宿主组织环境,必要的癌细胞增殖和侵袭13。目前,我们研究使用绒毛膜尿囊膜法(CAM法)作为一个可重复的异种移植物模型肉瘤14,15。本试剂盒被广泛用于肿瘤血管生成的研究16,17。然而,在文献中,我们已经发现这个实验的不同的协议,而其他的研究观察到的生长或血管生成的显着性差异,根据不同的协议18,19。

在这篇文章中,我们探讨不同的CAM检测条件对细胞行为的肿瘤移植,肿瘤来源的单细胞悬液和既定的肉瘤细胞培养的效果。

Protocol

参见图1的概述肿瘤材料 1。肿瘤样本的获取和准备的伦理委员会的批准,如果在病人的材料的使用是必要的,从病人取得的知情同意书。 嘉实代表材料(最小为1厘米3)干预的时间,无论是活检或切除的肉瘤。活检定义适当的地点使用动态对比度MRI。 立即将材料在无菌小瓶含1000 U青霉素和1毫克/毫升?…

Representative Results

在CAM的评价肿瘤移植变得附着到CAM( 图2A)。单细胞悬液经常从病人的材料显示干燥,微微凸起的牌匾( 图2D)。切除后的CAM,标志着起皱发生膜( 图2E和2F)。 对于商业细胞株的牌匾变得更加不透明,表明细胞的增殖。 ECM凝胶在不同的细胞系有明显的增长模式上的CAM。 SAOS2形成一个蔓延斑块,表面从接?…

Discussion

接种和收获的时间

时序进行SAOS2天接种ECM凝胶(36的CAM)和胚胎发育天5和10之间变化。

孵化前9天,CAM是不能持续大到足以支持我们采用ECM凝胶。收获时,肿瘤细胞有时不得不从更深的CAM检索,并在蛋白或CAM一些ECM凝胶样品躺在松动。在第5和第6天,这是很难避免把小鸡畸形或死亡,导致肿瘤细胞鸡胚。从第9天,在CAM被完全覆盖的大部分鸡蛋的窗口下面的表?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

从SW1353软骨肉瘤细胞系细胞恳请教授的PCW Hogendoorn博士,荷兰莱顿大学教授J.博维。我们感谢的J. Mestach和G. Wagemans优秀的技术援助,G.德Bruyne专业绘图概述我们的协议。

Materials

Name of Reagent Company Catalog Number
Cell Line Nucleofector Kit V Amaxa VCA-1003
collagenase 2 solution (500 U/ml RPMI 1640) Sigma Aldrich C6885
DMEM Invitrogen 41965-039
DMSO Sigma D8418
Dnase solution Sigma Aldrich DN25
G418 Invitrogen 11811031
Matrigel Sigma-Aldrich E1270
mouse primary monoclonal antibody Ki67 Dako Denmark MIB-1
Paraformaldehyde Fluka D76240
PBS Invitrogen 20012019
PBSD Invitrogen 14040083
peGFP-C1 vector Clontech 632470
Penicillin/streptomycin Invitrogen 15140163
RPMI Invitrogen 22409-015
Trypsin-EDTA solution Invitrogen 25300054
Vybrant cell-labeling DiI Lifetechnologies 22885
Name of Equipment Company Catalog Number
Countess Automated Cell Counter Invitrogen C10227
digital color camera Leica DFC 340 FX
Digital Egg Incubator Auto Elex Co R-COM 50
FACS BD Biosciences FACSAriaIII
Gentlemacs C-Tube Miltenyi Biotech 130-093-237
Gentlemacs Dissociator Miltenyi Biotech 130-093-235
Gentlemacs Dissociator User Manual containing h_tumor protocol Miltenyi Biotech  
semipermeable adhesive film (Suprasorb F) Lohmann&Rauscher 20468
stereo fluorescence microscope Leica M205 FA
Tissue-Tek Film automated Coverslipper Sakura 6400
ultraView Universal DAB Detection Kit Ventana Medical Systems Inc 760-500
Ventana Automated Slide Stainer Ventana Medical Systems Benchmark XT

References

  1. Mankin, H. J., Hornicek, F. I., Rosenberg, A. E., Harmon, D. C., Gebhardt, M. C. Survival data for 648 patients with osteosarcoma treated at one institution. Clinical Orthopaedics and Related Research. 429, 286-291 (2004).
  2. Hoffmann, J., Schmidt-Peter, P., et al. Anticancer drug sensitivity and expression of multidrug resistance markers in early passage human sarcomas. Clinical Cancer Research. 5, 2198-2204 (1999).
  3. Greenlee, R. T., Hill-Harmon, M. B., Murray, T., Thun, M. Cancer statistics, 2001. CA A Cancer Journal for Clinicians. 51, 15-36 (2001).
  4. Gil-Benso, R., Lopez-Gines, C., et al. Establishment and characterisation of a continuous human chondrosarcoma cell line, ch-2879: Comparative histologic and genetic studies with its tumor of origin. Laboratory Investigations. 83, 877-887 (2003).
  5. Taylor, B. S., Barretina, J., et al. Advances in sarcoma genomics and new therpeutic targets. Nature Reviews Cancer. 11, 541-557 (2011).
  6. Skubitz, K. M., D’Adamo, D. R. Sarcoma. Mayo Clinic Proceedings. 82, 1409-1432 (2007).
  7. Nielsen, T. O., West, R. B. Translating gene expression into clinical cara: sarcomas as a paradigm. Journal of Clinical Oncology. 28, 1796-1805 (2010).
  8. Vaira, V., Fedele, G., Pyne, S. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proceedings of the National Academy of Science USA. 107, 8352-8356 (2010).
  9. DeRose, Y. S., Wang, G., et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Medicine. 17, 1514-1520 (2011).
  10. Tentler, J. J., Tan, A. C., et al. Patient-derived tumour xenografts as models for oncology drug development. Nature Reviews Clinical Oncology. 9, 338-350 (2012).
  11. Bertotti, A., Migliardi, G., et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discovery. 1, 508-523 (2011).
  12. Decaudin, D. Primary human tumor xenografted models (‘tumorgrafts’) for good management of patients with cancer. Anticancer Drugs. 22, 827-841 (2011).
  13. Hanahan, D., Weinberg, R. A. Hallmarks of cancer: The next generation. Cell. 144, 646-674 (2011).
  14. Sys, G., Van Bockstal, M., et al. Tumor grafts derived from sarcoma patients tumor morphology, viability, and invasion potential and indicate disease outcomes in the chick chorioallantoic membrane model. Cancer Letters. 326, 69-78 (2012).
  15. Armstrong, P. B., Quigley, J. P., Sidebottom, E. Transepithelial invasion and intramesenchymal infiltration of the chick embryo chorioallantois by tumor cell lines. 암 연구학. 42, 1826-1837 (1982).
  16. Deryugina, E., Quigly, J. Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochemistry and Cell Biology. 130, 1119-1130 (2008).
  17. Knighton, D., Ausprunk, D., Tapper, D., Folkman, J. Avascular and vascular phases of tumor growth in the chick embryo. British Journal of Cancer. 35, 347-356 (1977).
  18. Dohle, D. S., Pasa, S. D., Gustmann, S., Laub, M., Wissler, J. H., Jennissen, H. P., Dünker, N. Chick ex ovo culture and ex ovo CAM assay: how it really works. J. Vis. Exp. (33), e1620 (2009).
  19. Balke, M., Neumann, A., et al. Morphologic characterization of osteosarcoma growth on the chick chorioallantoic membrane. BMC Research Notes. 3, 58 (2010).
  20. Hendrix, A., Maynard, D., et al. Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. Journal of the National Cancer Institute. 102, 866-880 (2010).
  21. Ausprunk, D., Knighton, D., Folkman, J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois: role of host and preexisting graft vessels. American Journal of Pathology. 79, 597-618 (1975).
  22. Lokman, N. A., Elder, A. S. F., Riciardelli, C., Oehler, M. K. Chick Chorioallantoic membrane (CAM) Assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. International Journal of Molecular Sciences. 13, 9959-9970 (2012).
  23. Vargas, A., Zeisser-Labouèbe, M., Lange, N., Gurny, R., Delie, F. The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Advanced Drug Delivery Reviews. 59, 1162-1176 (2007).
  24. Hagedorn, M., Javerzat, S., et al. Accessing key steps of human tumor progression in vivo by using an avian embryo model. Proceedings of the National Academy of Sciences U.S.A. 102, 1643-1648 (2005).
  25. De Wever, O., Hendrix, A., et al. Modeling and quantification of cancer cell invasion through collagen type I matrices. International Journal of Developmental Biology. 54, 887-896 (2010).
  26. Albini, A., Benelli, R. The chemoinvasion assay: A method to assess tumor and endothelial cell invasion and its modulation. Nature Protocols. 2, 504-511 (2007).
  27. Hanahan, D., Coussens, L. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 21, 309-322 (2012).
check_url/kr/50522?article_type=t

Play Video

Cite This Article
Sys, G. M., Lapeire, L., Stevens, N., Favoreel, H., Forsyth, R., Bracke, M., De Wever, O. The In ovo CAM-assay as a Xenograft Model for Sarcoma. J. Vis. Exp. (77), e50522, doi:10.3791/50522 (2013).

View Video