Summary

צעדים לעצמיים ב<em> Ex vivo</emניסוי כבד וכליה> perfused בשר חזירים

Published: December 18, 2013
doi:

Summary

Study of the animal organ physiology can be achieved by performing an experimental ex vivo perfusion system. The addition of a porcine kidney, as a homeostatic organ to our previously developed ex vivo liver perfusion model can be a principal step to achieve a better physiological environment.

Abstract

השימוש במודלים לשעבר perfused vivo יכול לחקות את התנאים הפיסיולוגיים של הכבד לתקופות קצרות, אבל כדי לשמור על הומאוסטזיס נורמלי לתקופה ממושכת זלוף הוא מאתגר. הוספנו את הכליה לvivo לשעבר perfused מודל הניסוי הקודם שלנו בכבד לשחזר מצב פיסיולוגי מדויק יותר לניסויים ממושכים ללא שימוש בבעלי חיים. חמישה כבדים וכליות ללא פגע נאספו לאחר המוות מחזירים הקריבו בימים שונים וperfused עבור מינימום של 6 שעות. גזים בדם העורקי לשעה התקבלו לנתח pH, חומצת החלב, גלוקוזה ופרמטרי כליות. נקודת הסיום הראשונית היה לבדוק את ההשפעה של הוספת כליה אחת למודל על רמות איזון חומצת בסיס, גלוקוז, ואלקטרוליטים. התוצאה של ניסוי כבד בכליות זה הושוותה לתוצאות של חמישה דגמי זלוף קודמים בכבד בלבד. לסיכום, עם התוספת של כליה אחת לvivo לשעבר מעגל כבד, hyperglycemIA וחמצת מטבולית השתפרו. בנוסף מודל זה משחזר את התגובות הפיזיולוגיות וחילוף חומרים של הכבד מספיק מדויק כדי לייתר את הצורך בשימוש בבעלי חיים בשידור חי. לשעבר מודל זלוף כבד כליות vivo יכול לשמש כשיטת חלופית במחקרים ספציפיים איברים. הוא מספק ניתוק מהשפעות מערכתיות רבות ומאפשר התאמות ספציפיות ומדויקות של עורקים ולחצים וזרימה ורידית.

Introduction

Studying a large animal organ physiology in an artificial environment is challenging. Furthermore, maintaining normal physiological and biochemical parameters for a prolonged period requires a closely monitored perfusion method and model. We have previously described our ex vivo autologous perfused porcine liver model for the study of hepatic physiology and significant progress has been achieved, since we began our liver reperfusion ex vivo model in 2005, in areas such as harvesting technique, understanding hepatic artery anatomical variations1, inflammatory response2,3, histological changes following liver electrolytic ablation (EA)4, and changes in acid base balance during EA5. Unfortunately hyperglycemia and metabolic acidosis require external supplements of insulin and bicarbonate to maintain an accurate physiological environment. Stable blood sugar levels and acid base balance are crucial when studying islet auto-transplantation, especially in the early implantation phase. We have developed a new model incorporating the kidney to clear excess metabolites and improve the environment for the islet transplantation6,7.

Extracorporeal perfusion experiments lasting longer than 24 hr can also be performed, but these require a larger team to perform the experiments8.

Animals used in this study received human care and study protocols were in accordance with the United Kingdom laws. They were euthanized with final exsanguinations during the blood-harvesting procedure according to United Kingdom regulations. Porcine liver and a left kidney were retrieved from animals in the food chain and that would otherwise be discarded. In this way important ethical implications can be overcome and the economic burden is lower than more common in vivo studies. The short duration of liver and kidney perfusion time in this model, lasting from 6-24 hr, has been a major limitation of our studies; this can be improved by minimizing the exposure of the organs to the ischemic injury (cold and warm ischemia).

Protocol

1. Preparation of the Procedure Equipment, Solutions, and Experiment Setup Equipment: The following equipment is required: Dissecting instruments: scissors, scalpels, artery forceps, 6x artery clips. 4x 12-14F catheters (for portal vein, hepatic artery, bile duct and renal artery), 1x 12F catheter (ureter), suture material (20x Vicryl stitches and Vicryl ties), stitch scissors, 3x infusion sets, ice in large insulated transport container, gloves, a large sterile …

Representative Results

Liver Function The liver function tests remained stable for the first 6 hr. However, there were significant changes present only from the 19th hour of the 24 hr experiment (P<0.001). Factor V and X were progressively diminished during the whole experiment and significant changes were evident from the 5th hour of perfusion for factor V and from the 3rd hour for the factor X onward, (P<0.05; Figure 2)20. <p class…

Discussion

In our group the experience and the results achieved with the ex vivo perfusion of the liver have been paralleled over the years by concomitant modifications in the retrieval technique adopted. In the last few years our group has achieved considerable experience using an ex vivo porcine model to study the hepatic physiology5,11, new liver ablation techniques2,5, and liver immunology3. Despite the technical challenges derived from an additional organ, corrections of …

Disclosures

The authors have nothing to disclose.

Acknowledgements

We would like to thank Sarah Hosgood from the Department of Transplantation, University Hospitals of Leicester, for technical support with the porcine kidney in this model.

Materials

Epoprostenol sodium (Flolan) Glaxo Smith Kline PL10949/0310
Sodium Bicarbonate 8.4% Polyfusor, Fresenius Kabi Ltd PL8828/0043
Cefuroxime sodium (Zynacef) Flynn Pharma Ltd PL13621/0018
Calcium Chloride 14.7% Martindale Pharmaceuticals PL1883/6174R
Heparin  LEO Laboratories Limited PL0043/0038R
Sodium taurocholate Sigma-Aldrich T4009-25G
Insulin (Actrapid) Novo Nordisk EU/1/02/230/003
Soltran (preservation solution) Baxter Health Care FKB4708G preservation solution
Atraumatic centrifugal pump (Bio-console 560) Medtronic Inc., Minneapolis, Minnesota- United States; custom pack, cardiac surgery division Europe

References

  1. Gravante, G., Ong, S. L., Metcalfe, M. S., Lloyd, D. M., Dennison, A. R. The porcine hepatic arterial supply, its variations and their influence on the extracorporeal perfusion of the liver. J. Surg. Res. 1, 56-61 (2011).
  2. Gravante, G., et al. Cytokine response of electrolytic ablation in an ex vivo perfused liver model. ANZ J. Surg. , 7-8 (2010).
  3. Gravante, G., et al. Cytokine response to ischemia/reperfusion injury in an ex vivo perfused porcine liver model. Transplant Proc. 4, 1107-1112 (2009).
  4. Gravante, G., et al. Patterns of histological changes following hepatic electrolytic ablation in an ex-vivo perfused model. Pathol. Oncol. Res. 4, 1085-1089 (2012).
  5. Gravante, G. Changes in acid-base balance during electrolytic ablation in an ex vivo perfused liver model. Am. J. Surg. 5, 666-670 (2012).
  6. Chung, W. Y., et al. Addition of a kidney to the normothermic ex vivo perfused porcine liver model does not increase cytokine response. J. Artif. Organs. 3, 290-294 (2012).
  7. Chung, W. Y., et al. The autologous normothermic ex vivo perfused porcine liver-kidney model: improving the circuit’s biochemical and acid-base environment. Am. J. Surg. 4, 518-526 (2012).
  8. Yanaga, K., Makowka, L., Lebeau, G., Hwang, R. R., Shimada, M., Kakizoe, S., et al. A new liver perfusion and preservation system for transplantation research in large animals. J. Invest. Surg. 3 (1), 65-75 (1990).
  9. Chung, W. Y., et al. The autologous normothermic ex vivo perfused porcine liver-kidney model: improving the circuit’s biochemical and acid-base environment. Am. J. Surg. 4, 518-526 (2012).
  10. Chung, W. Y., et al. Addition of a kidney to the normothermic ex vivo perfused porcine liver model does not increase cytokine response. J. Artif. Organs. 3, 290-294 (2012).
  11. Gravante, G., et al. Effects of hypoxia due to isovolemic hemodilution on an ex vivo normothermic perfused liver model. J. Surg. Res. 1, 73-80 (2010).
  12. Butler, A. J., et al. Successful extracorporeal porcine liver perfusion for 72 hr. Transplantation. 8, 1212-1218 (2002).
  13. St Peter, S. D., Imber, C. J., Lopez, I., Hughes, D., Friend, P. J. Extended preservation of non-heart-beating donor livers with normothermic machine perfusion. Br. J. Surg. 5, 609-616 (2002).
  14. Schon, M. R., et al. Liver transplantation after organ preservation with normothermic extracorporeal perfusion. Ann. Surg. 1, 114-123 (2001).
  15. Siedlecki, A., Irish, W., Brennan, D. C. Delayed graft function in the kidney transplant. Am. J. Transplant. 11, 2279-2296 (2011).
  16. Monbaliu, D., et al. Primary graft nonfunction and Kupffer cell activation after liver transplantation from non-heart-beating donors in pigs. Liver Transpl. 2, 239-247 (2007).
  17. Skaro, A. I., Jay, C. L., Ladner, D., Abecassis, M. M. Trends in donation after cardiac death and donation after brain death–reading between the lines. Am. J. Transplant. 11, 2390-2391 (2010).
  18. Brandhorst, D., Iken, M., Bretzel, R. G., Brandhorst, H. Pancreas storage in oxygenated perfluorodecalin does not restore post-transplant function of isolated pig islets pre-damaged by warm ischemia. Xenotransplantation. 5, 465-470 (2006).
  19. Lin, Q. Y., Chui, K. K., Rao, A. N. Rapid donor liver procurement with only aortic perfusion. World. J. Gastroenterol. 6, 884-886 (2001).
  20. Chung, W. Y., et al. The development of a multiorgan ex vivo perfused model: results with the porcine liver-kidney circuit over 24 hours. Artif. Organs. 5, 457-466 (2013).

Play Video

Cite This Article
Chung, W. Y., Eltweri, A. M., Isherwood, J., Haqq, J., Ong, S. L., Gravante, G., Lloyd, D. M., Metcalfe, M. S., Dennison, A. R. Steps for the Autologous Ex vivo Perfused Porcine Liver-kidney Experiment. J. Vis. Exp. (82), e50567, doi:10.3791/50567 (2013).

View Video