Summary

Los andamios de autoinforme para el 3-Dimensional Cultivo Celular

Published: November 07, 2013
doi:

Summary

Biocompatible pH responsive sol-gel nanosensors can be incorporated into poly(lactic-co-glycolic acid) (PLGA) electrospun scaffolds. The produced self-reporting scaffolds can be used for in situ monitoring of microenvironmental conditions whilst culturing cells upon the scaffold. This is beneficial as the 3D cellular construct can be monitored in real-time without disturbing the experiment.

Abstract

Culturing cells in 3D on appropriate scaffolds is thought to better mimic the in vivo microenvironment and increase cell-cell interactions. The resulting 3D cellular construct can often be more relevant to studying the molecular events and cell-cell interactions than similar experiments studied in 2D. To create effective 3D cultures with high cell viability throughout the scaffold the culture conditions such as oxygen and pH need to be carefully controlled as gradients in analyte concentration can exist throughout the 3D construct. Here we describe the methods of preparing biocompatible pH responsive sol-gel nanosensors and their incorporation into poly(lactic-co-glycolic acid) (PLGA) electrospun scaffolds along with their subsequent preparation for the culture of mammalian cells. The pH responsive scaffolds can be used as tools to determine microenvironmental pH within a 3D cellular construct. Furthermore, we detail the delivery of pH responsive nanosensors to the intracellular environment of mammalian cells whose growth was supported by electrospun PLGA scaffolds. The cytoplasmic location of the pH responsive nanosensors can be utilized to monitor intracellular pH (pHi) during ongoing experimentation.

Introduction

A key strategy in tissue engineering is the use of biocompatible materials to fabricate scaffolds whose morphology resembles the tissue that it is going to replace and is also capable of supporting cell growth and function1,2. The scaffold provides mechanical support by allowing cell attachment and proliferation yet allows cell migration throughout the interstices of a 3D cellular construct. The scaffold must also allow for the mass transport of cell nutrients and not inhibit removal of metabolic waste3.

Electrospinning has emerged as a promising method for the fabrication of polymeric scaffolds capable of supporting cellular growth4-6. The nonwoven electrospun fibers produced are suitable for cell growth as they are often porous and allow cell-cell interaction as well as cell migration throughout the interstices of a 3D cellular construct7. It is important to monitor cell viability during the period of culture and to ensure that cell viability is maintained throughout the whole of the 3D construct. For example, culture conditions such as oxygen and pH require careful control, as gradients in analyte concentration can exist within the 3D construct. Bioreactors or perfusion systems can be employed to mimic in vivo conditions of interstitial flow and as a result increase nutrient transfer and metabolic waste removal8. The question of whether such systems are ensuring constant microenvironmental conditions can be addressed by assessing the cellular microenvironment in real-time.

Key microenvironment metrics that could be monitored in real-time include: temperature, chemical composition of cell media, concentration of dissolved oxygen and carbon dioxide, pH, and humidity. Of these metrics, temperature can be most readily monitored using in situ probes. Methods for monitoring the remaining listed metrics commonly involve removal of an aliquot for sampling and therefore disturb the cell culture and increase the contamination risk. Continuous, real-time methods are being sought. Current monitoring methods usually rely upon instruments that physically probe the cellular construct such as a pH monitor or oxygen probe. However, these intrusive methods can damage the cellular construct and disturb the ongoing experiment. Noninvasive monitoring of analyte concentrations within the 3D construct could enable real-time monitoring of various environmental aspects such as nutrient depletion9. This would allow assessment of nutrient supply to deeper regions within the structure and determine whether metabolic waste was being removed effectively10,11. Systems that attempt to address the issue of invasiveness generally involve the use of a perfusion chamber that passes culture medium through both the culture vessel and to external sensors to monitor pH, oxygen and glucose12. There is increasing interest in developing sensors that can be directly integrated into the culture vessel that do not require removal of an aliquot for sampling and as such would provide in situ monitoring.

To address such shortcomings for in situ and noninvasive monitoring of microenvironmental conditions we have incorporated analyte responsive nanosensors into electrospun scaffolds to produce self-reporting scaffolds13. Scaffolds that act as sensing devices by monitoring fluorescence activity have been prepared previously, where the sensing device was either the actual polymeric scaffold created by electrospinning or through the use of an analyte responsive dye which is incorporated into the polymer prior to scaffold formation14,15. However, these sensing devices have the potential to give erroneous optical outputs caused by possible interference from other analytes. The use of a ratiometric sensing device such as those prepared in the described protocol holds the potential to eliminate these possible adverse effects and provide a response specific to the analyte in question.

The electrospun scaffolds presented here have been prepared from the synthetic co-polymer poly(lactic-co-glycolic acid) (PLGA), selected due to having Food and Drug Administration (FDA) approval, owing to its biodegradable and biocompatible properties and a track record of supporting the growth and function of various cell types16-18. The prepared ratiometric analyte responsive nanosensors are responsive to pH. The nanosensors incorporate two fluorescent dyes into a biocompatible sol-gel matrix where one dye, FAM is responsive to pH and the other, TAMRA acts as an internal standard as it is not responsive to pH. Furthermore the fluorescence of both FAM and TAMRA can be analyzed separately as they do not significantly overlap. Determining the ratio of the fluorescence emission of both dyes at specific wavelengths gives a pH response independent of other environmental conditions. The self-reporting scaffolds could allow repeat assessment of pH in situ and in real-time without disrupting the developed 3D model. We have demonstrated that these scaffolds are capable of supporting cell attachment and proliferation and remain responsive to the analyte in question. The kinetics of acidic by-products in engineered constructs remains understudied and as such using the pH responsive scaffolds could greatly facilitate such studies19. Furthermore, the use of the self-reporting scaffolds for tissue engineering applications presents the opportunity to fully understand, monitor and optimize the growth of 3D model tissue constructs in vitro, noninvasively and in real-time.

The pH responsive nanosensors have also been delivered to the intracellular environment of fibroblasts cultured upon electrospun PLGA scaffolds. The ratio of the fluorescence emission from the dyes were used to monitor pHi and compared to a self-reporting scaffold incorporating pH nanosensors. The delivery of nanosensors to cells cultured in a 3D environment could enable monitoring of analyte concentration deep within the construct in a nondestructive manner. Therefore nanosensors may be a viable imaging tool to nondestructively assess cell behavior throughout 3D constructs allowing long-term analysis. Screening the analyte concentration of individual cells within a 3D construct could ensure that they are receiving sufficient nutrient and oxygen concentrations. Monitoring process parameters could assist in the development of standardized techniques for the effective mass transport of oxygen and nutrients. The delivery of nanosensors to the intracellular environment and incorporation of nanosensors into polymeric scaffolds could be combined to allow assessment of cell viability as well as scaffold performance within 3D constructs during the tissue growth process. This may lead to increased knowledge of these constructs and progress the fabrication of biologically relevant tissue substitutes.

Protocol

Overview Section 1 describes the preparation of pH responsive nanosensors and characterization of nanosensor response to pH using fluorescence spectrometry and their size using SEM. Section 2 describes the preparation of electrospun polymer scaffolds and characterization of their morphology and size using SEM. Section 2 also describes the preparation of self-reporting scaffolds which are electrospun scaffolds with the inclusion of the pH responsive nanosensors. The res…

Representative Results

The size distribution of the prepared pH responsive nanosensors was characterized using SEM, where the population of nanosensors imaged were measured and found to have nanometer dimensions in the range of 240-470 nm (Figure 1A). The achievement of a narrow and reasonably small diameter is consistent with using the Stöber method to prepare nanoparticles. It has been found that using a basic pH environment during the synthesis of nanoparticles i.e. nanoparticles prepared using the Stöber…

Discussion

Tissue engineering aspires to create biological substitutes that can be used both as in vivo like in vitro tissue models and in tissue replacement therapy to repair, replace, maintain or enhance the function of a particular tissue or organ. Synthetic substitutes have been used for many years to replace or aid repair of tissues but these often fail due to poor integration with the host tissue and/or infection, which ultimately leads to rejection or further revision surgery. Generating living tissue in th…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Funding from the BBSRC is kindly acknowledged (grant number BB H011293/1).

Materials

Ethanol Fisher 32221
Anhydrous dimethylformamide (DMF) Sigma 270547
Ammonium hydroxide 50% (v/v) aqueous solution Alfa Aesar 35574 diluted to 30% (v/v) with pure water
TEOS Sigma 13190-3
3-Aminopropyltriethoxysilane (APTES) Sigma A3648
5-(and-6)-carboxyfluorescein, succinimidyl ester (FAM-SE) Invitrogen C1311
6-carboxytetramethylrhodamine, succinimidyl ester (TAMRA-SE) Invitrogen C1171
Sodium phosphate monobasic (0.2 M) Sigma Aldrich S-9638
Sodium phosphate dibasic (0.2 M) Sigma Aldrich S-0876
NaOH Sigma Aldrich S8045
Trypsin/EDTA Sigma Aldrich T4174
Penicillin/Streptomycin Sigma Aldrich P0781
PBS Sigma Aldrich D8537
DMEM Sigma Aldrich D6046
FBS Source Bioscience Batch-213-101992
L-Glutamine Sigma Aldrich G7513
Lipofectamine 2000 Invitrogen 11668-019
Optimem Invitrogen 11058-021
LysoTracker Red Invitrogen L-7528
Draq5 Biostatus Ltd DR50050
Nitrogen gas BOC
DCM Sigma Aldrich 320269
TFA Sigma Aldrich T6508
Confocal microscope Leica TCS-SP equipped with argon and krypton lasers and a 63X 0.9NA water immersion lens
UV light UVLS28 UVP, USA
Stirrer plate SB161-3 Jencons-PLS
pH meter Jenway model 3510
Rotary Evaporator Buchi Rotary Evaporator R200
Centrifuge (nanosensors) Hermle Z300
Centrifuge (cell culture) Thermo Scientific Heraeus Biofuge Primo
Vortex Whirlimixer Fisherbrand
Ultrasonicator FB11021 Fisherbrand
Aluminum sheet Nottingham University
35mm cell culture plate Iwaki 3000035
10 ml syringe Becton Dickenson
3T3 Fibroblast cells European Collection of Cell Cultures
PLGA Lakeshore Biomaterials 7525 DLG 7E
Pyridinium formate Sigma Aldrich P8535
Trypan blue Sigma Aldrich T8154
Sodium phosphate monobasic Sigma Aldrich S9638
Sodium phosphate dibasic Sigma Aldrich S5136
HCl Sigma Aldrich 320331

References

  1. Takimoto, Y., Dixit, V., Arthur, M., Gitnick, G. De novo liver tissue formation in rats using a novel collagen-polypropylene scaffold. Cell Transplantation. 12 (4), 413-421 (2003).
  2. Sales, V. L., Engelmayr, G. C., et al. Protein precoating of elastomeric tissue-engineering scaffolds increased cellularity, enhanced extracellular matrix protein production, and differentially regulated the phenotypes of circulating endothelial progenitor cells. Circulation. 116 (11), I55-I63 (2007).
  3. Hollister, S. J. Porous scaffold design for tissue engineering. Nature Materials. 4 (7), 518-524 (2005).
  4. Li, D., Xia, Y. N. Electrospinning of nanofibers: Reinventing the wheel?. Advanced Materials. 16 (14), 1151-1170 (2004).
  5. Sill, T. J., von Recum, H. A. Electro spinning: Applications in drug delivery and tissue engineering. Biomaterials. 29 (13), 1989-2006 (2008).
  6. Pham, Q. P., Sharma, U., Mikos, A. G. Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Engineering. 12 (5), 1197-1211 (2006).
  7. Sawyer, N. B. E., Worrall, L. K., et al. In situ monitoring of 3D in vitro cell aggregation using an optical imaging system. Biotechnology and Bioengineering. 100 (1), 159-167 (2008).
  8. Dan, L., Chua, C. K., Leong, K. F. Fibroblast Response to Interstitial Flow: A State-of-the-Art Review. Biotechnology and Bioengineering. 107 (1), 1-10 (2010).
  9. Pancrazio, J. J., Wang, F., Kelley, C. A. Enabling tools for tissue engineering. Biosensors & Bioelectronics. 22 (12), 2803-2811 (2007).
  10. You, Y., Lee, S. W., Youk, J. H., Min, B. M., Lee, S. J., Park, W. H. In vitro degradation behaviour of non-porous ultra-fine poly(glycolic acid)/poly(L-lactic acid) fibres and porous ultra-fine poly(glycolic acid) fibres. Polymer Degradation and Stability. 90 (3), 441-448 (2005).
  11. Dong, Y. X., Liao, S., Ramakrishna, S., Chan, C. K. Distinctive degradation behaviors of electrospun PGA, PLGA and P(LLA-CL) nanofibers cultured with/without cell culture. Multi-Functional Materials and Structures. 47 – 50, 1327-1330 (2008).
  12. Xu, Y. H., Sun, J. J., Mathew, G., Jeevarajan, A. S., Anderson, M. M. Continuous glucose monitoring and control in a rotating wall perfused bioreactor. Biotechnology and Bioengineering. 87 (4), 473-477 (2004).
  13. Harrington, H. C., Rose, F. R. A. J., Reinwald, Y., Buttery, L. D. K., Ghaemmaghami, A. M., Aylott, J. W. Electrospun PLGA fibre sheets incorporating fluorescent nanosensors: self-reporting scaffolds for application in tissue engineering. Analytical Methods. 5 (1), (2013).
  14. Wang, X. Y., Drew, C., Lee, S. H., Senecal, K. J., Kumar, J., Sarnuelson, L. A. Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Letters. 2 (11), 1273-1275 (2002).
  15. Yang, Y., Yiu, H. H. P., El Haj, A. J. On-line fluorescent monitoring of the degradation of polymeric scaffolds for tissue engineering. Analyst. 130 (11), 1502-1506 (2005).
  16. Blackwood, K. A., McKean, R., et al. Development of biodegradable electrospun scaffolds for dermal replacement. Biomaterials. 29 (21), 3091-3104 (2008).
  17. Bashur, C. A., Dahlgren, L. A., Goldstein, A. S. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes. Biomaterials. 27 (33), 5681-5688 (2006).
  18. Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S., Ko, F. K. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research. 60 (4), 613-621 (2002).
  19. Sung, H. J., Meredith, C., Johnson, C., Galis, Z. S. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials. 25 (26), 5735-5742 (2004).
check_url/kr/50608?article_type=t

Play Video

Cite This Article
Harrington, H., Rose, F. R., Aylott, J. W., Ghaemmaghami, A. M. Self-reporting Scaffolds for 3-Dimensional Cell Culture. J. Vis. Exp. (81), e50608, doi:10.3791/50608 (2013).

View Video