Summary

High Resolution Hele Mount<em> In Situ</em> Hybridisering inden Zebrafisk embryoner at studere genekspression og funktion

Published: October 19, 2013
doi:

Summary

Den zebrafisk, en lille tropisk fisk, er blevet en populær model for at studere genfunktion under hvirveldyr udvikling og sygdom. Det tidsmæssige og rumlige ekspression af målgener kan bestemmes ved<em> In situ</em> Hybridisering. Vores forbedrede protokol giver mulighed for påvisning af lave rigelige transkripter med lav ikke-specifik baggrund signal.

Abstract

Denne artikel fokuserer på hel-mount in situ hybridisering (WISH) i zebrafisk embryoner. Den WISH teknologi letter vurderingen af ​​genekspression både vævsfordeling og udviklingsstadiet. Protokollerne beskrevet for brugen af ​​WISH af zebrafisk embryoner med antisense RNA-prober mærket med digoxigenin. Prober genereres ved at inkorporere digoxigenin-linked nukleotider gennem in vitro-transkription af genet skabeloner, der er blevet klonet og lineariseret. De chorions af embryoner høstet ved definerede udviklingsstadier fjernes før inkubation med specifikke prober. Efter en vask procedure for at fjerne overskydende probe, er embryoner inkuberet med anti-digoxigenin-antistof konjugeret med alkalisk phosphatase. Ved at anvende et kromogent substrat for alkalisk phosphatase, kan specifik genekspression vurderes. Afhængig af størrelsen af ​​genekspression hele proceduren kan afsluttes inden for 2-3 dage.

Introduction

Den zebrafisk (Danio rerio) er dukket op som en stærk dyremodel for studiet af hvirveldyr udvikling, sygdom, adfærd og in-medikamentscreeningsanalyse 1-3. Zebrafisk embryoner kan opnås i stort tal fra et enkelt passage. Befrugtning og udvikling sker ex utero og optisk klare embryoner udvikle sig hurtigt. Kritiske udviklingsmæssige hændelser forekommer i de første 48 timer efter befrugtning (HPF). Dette omfatter fremkomsten af ​​orgel primordier og påbegyndelsen af ​​cytodifferentiation. Knockdown eller over-ekspression af proteiner kan opnås gennem mikroinjektion af fostre med antisense morpholino (MO) oligonucleotider eller mRNA henholdsvis den ene eller to celle stadiet (0,75 HPF).

Ønsket om zebrafisk embryoner letter undersøgelse af spatio-temporale ekspression af specifikke gener af interesse. Anvendelse af WISH teknikken efter mikroinjektion af fostre med mRNA eller MO at over-udtrykess eller knockdown specifikke protein niveauer afslører differentieret regulering af andre gener.

Ændringer i genekspression mønstre kan korreleres med fænotypiske ændringer og afslører funktionen af ​​målgener i den tidlige organogenese. Da prober kan fremstilles og lagres på forhånd, kan ISH teknik anvendes til at afsløre genekspressionsmønstre i mindst 20 gener ad gangen med seks-brønds plader og specialfremstillede kurve.

Protocol

1.. Whole-mount in situ hybridisering af Zebrafisk embryoner 1.1 Forberedelse af embryoner Saml embryoner på de krævede udviklingsstadier. Se Kimmel et al. 5 for vorden beskrivelse. Fjern chorions manuelt ved hjælp pincet (Dumont Urmagere pincet no. 5). Lave embryoer i en 4% opløsning af paraformaldehyd (PFA), som består i PBS (phosphatbufret saltvand) natten over ved 4 ° C. Vask embryoer med …

Representative Results

Brug af protokol med 50 embryoner pr kurven (per gen / per eksperimentel betingelse) udtryk mønster af dette gen kan opnås et eksperiment. Næsten alle de embryoner viser lignende ekspressionsmønstre for et bestemt gen. Repræsentative eksempler på in situ hybridisering farvning er vist i figur 3-6. Både fornuft og anti-sense riboprober blev syntetiseret fra cDNA'erne svarende til PC5.1, PC5.2 6, SCL/tal-1 7, gata-1 8,9, FLK…

Discussion

Vi har udviklet forbedrede metoder til at visualisere RNA med høj opløsning. Den in situ hybridisering procedurer gennemføres ved hjælp af simple skræddersyede kurve med porøse bunde (Figur 1). Embryoer behandlet ved hjælp af RNase-fri løsninger i plader med 6 brønde ved stuetemperatur under sterile betingelser.

At adskille embryoner kurve er fremstillet af forskellige farvede Eppendorf-rør. Kurve med eller uden en fælg bruges til nem orientering og til a…

Disclosures

The authors have nothing to disclose.

Materials

Taq Polymerase Invitrogen 10342053
TopoTA Cloning Kit- Dual Promoter pCRII-TOPO Invitrogen K4650-01
HQ Mini Plasmid Purification Kit Invitrogen K2100-01
Agarose Roche 11 685 660 001
Not1 and HindIII Restriction Enzymes Invitrogen 15441-025, 15207-012
Buffer Saturated Phenol, ultrapure Invitrogen 15513039 Store at 4 °C. Eyes, skin, and respiratory tract irritant and suspected carcinogen. Care should be taken while handling.
Chloroform Fisher C607-1 Toxic and suspected carcinogen. Work under fume hood.
RNase-free DNAse I Roche 4716728001 Prepare small aliquots and store at -20°C.
DIG-RNA Labeling Mix with Sp6, T7 and T3 RNA Polymerase Roche 11277073910
RNase Inhibitor Roche 10777-019
3.0 M Sodium Acetate (pH 5.5) Fisher 50-751-7355
100% Ethanol Commercial alcohols
Diethyl Pyrocarbonate (DEPC) Sigma 40718-25ML DEPC is an eye, skin, and respiratory irritant. Avoid contact with skin and eyes. Use safety glasses, gloves, and mask.
NaOH Fisher SS255-1
EDTA 0.5 M (pH 8.0) Fisher 50-751-7404
Instant Ocean Salt Aquarium Systems N/A
Phosphate Buffered Saline (PBS) Fisher FL-03-0900
Paraformaldehyde (PFA) Sigma P6148-1KG Prepare and store at -20°C as 40 ml aliquots for later use. PFA is toxic. Use safety glasses, gloves, and dust mask.
Phenylthiocarbomide (PTC) Sigma P7629-25G PTC is highly toxic. Use safety glasses, gloves, and dust mask.
Methanol Fisher A947-4
Dumont (Watchmaker’s) Forceps pattern no. 5 Fine Science Tools
Six-well Cell Culture Cluster Sarstedt 83.1839
Baskets are made of nylon mesh and Eppendorf tubes In-house preparation To make the baskets, cut Eppendorf tubes (1.5 ml) with or without rims to remove the conical end. Cut nylon mesh into small pieces corresponding to the size of the cut ends of the Eppendorf tubes. Place tubes with the nylon mesh covering the cut end on an electrical hot plate until both the tube and nylon mesh stick together (carry out in fume hood). Cut off the excess mesh from the baskets and store them in 100% methanol until used.
Polyoxyethylenesorbitan Monolaurate (Tween 20) Sigma P1379-500ML
Proteinase K Fermentas EO0491
Acetic Anhydride Sigma 242845
Triethanolamine Sigma 90279-100ML
Formamide, high purity grade Sigma F9037
AG501-X8 Resin Bio Rad 142-6424
Citric Acid monohydrate Sigma C0706-500G
Heparin Sodium Salt Sigma H3393-25KU
Saline-sodium Citrate Buffer (SSC) Sigma S6639
tRNA from bakers yeast type X Sigma R5636-1ML
NaCl Fisher S640-500
Tris-HCl Fisher BP153-1
MgCl2 Fisher S25403
Levamisole Hydrochloride Sigma 31742
N,N-Dimethylformamide
anhydrous (DMF)
Sigma 227056 Irritant, toxic, combustible, and suspected teratogen. Handle with proper safety attire including gloves and goggles.
5-Bromo-4-chloro-3-indolyl phosphate (BCIP) Sigma N6639 Protect this solution from light.
Nitroblue tetrazolium (NBT) Sigma 840W Protect this solution from light.
Albumin from Bovine Serum, purified fraction V (BSA) Sigma A8806
Sheep Anti-digoxigenin-AP Fab Fragments Roche 1093274910
Glycerol Sigma G5516-500ML
96-well cell culture plates Sarstedt 83.1835
Tg(mnx1:GFP)ml2/Tg(hb9:GFP)ml2 ZIRC Tg(mnx1:GFP)ml2
Instant Ocean Aquarium Systems N/A

References

  1. Lieschke, G. J., Currie, P. D. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353-367 (2007).
  2. Wolman, M., Granato, M. Behavioral genetics in larval zebrafish: learning from the young. Dev. Neurobiol. 72, 366-372 (2010).
  3. Lawson, N. D., Wolfe, S. A. Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Dev. Cell. 21, 48-64 (2011).
  4. Arkhipova, V., et al. Characterization and regulation of the hb9/mnx1 beta-cell progenitor specific enhancer in zebrafish. Dev. Biol. 365, 290-302 (2012).
  5. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310 (1995).
  6. Chitramuthu, B. P., et al. Molecular cloning and embryonic expression of zebrafish PCSK5 co-orthologues: functional assessment during lateral line development. Dev. Dyn. 239, 2933-2946 (2010).
  7. Liao, E. C., et al. SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. Genes Dev. 12, 621-626 (1998).
  8. Stainier, D. Y., Weinstein, B. M., Detrich, H. W., Zon, L. I., Fishman, M. C. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development. 121, 3141-3150 (1995).
  9. Detrich, H. W., et al. Intraembryonic hematopoietic cell migration during vertebrate development. Proc. Natl. Acad. Sci. U.S.A. 92, 10713-10717 (1995).
  10. Liao, W., et al. The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation. Development. , 124-381 (1997).
  11. Krauss, S., Concordet, J. P., Ingham, P. W. A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell. 75, 1431-1444 (1993).
  12. Akimenko, M. A., Ekker, M., Wegner, J., Lin, W., Westerfield, M. Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head. J. Neurosci. 14, 3475-3486 (1994).
  13. Alexander, J., Rothenberg, M., Henry, G. L., Stainier, D. Y. casanova plays an early and essential role in endoderm formation in zebrafish. Dev. Biol. 215, 343-357 (1999).
  14. Milewski, W. M., Duguay, S. J., Chan, S. J., Steiner, D. F. Conservation of PDX-1 structure, function, and expression in zebrafish. Endocrinology. 139, 1440-1449 (1998).
  15. Argenton, F., Walker, M. D., Colombo, L., Bortolussi, M. Functional characterization of the trout insulin promoter: implications for fish as a favorable model of pancreas development. FEBS Lett. 407, 191-196 (1997).
  16. Biemar, F., et al. Pancreas development in zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev. Biol. 230, 189-203 (2001).
  17. Thisse, C., Thisse, B., Schilling, T. F., Postlethwait, J. H. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development. 119, 1203-1215 (1993).
  18. Cadieux, B., Chitramuthu, B. P., Baranowski, D., Bennett, H. P. The zebrafish progranulin gene family and antisense transcripts. BMC Genomics. 6, 156 (2005).
  19. Chitramuthu, B. P., Bennett, H. P. Use of zebrafish and knockdown technology to define proprotein convertase activity. Methods Mol. Biol. 768, 273-296 (2011).
  20. Thisse, C., Thisse, B. High resolution in situ hybridization on whole-mount zebrafish embryo. Nat. Protoc. 3, 59-69 (2008).
check_url/kr/50644?article_type=t

Play Video

Cite This Article
Chitramuthu, B. P., Bennett, H. P. J. High Resolution Whole Mount In Situ Hybridization within Zebrafish Embryos to Study Gene Expression and Function. J. Vis. Exp. (80), e50644, doi:10.3791/50644 (2013).

View Video