Summary

Trapianti viso a<em> Xenopus laevis</em> Embrioni

Published: March 26, 2014
doi:

Summary

Una tecnica per il trapianto "Extreme anteriore dominio" dei tessuti del viso tra Xenopus laevis embrioni è stato sviluppato. Tessuto può essere spostato da un gene espressione sfondo in un'altra, permettendo lo studio delle esigenze locali di sviluppo craniofacciale e di segnalazione interazioni tra regioni facciali.

Abstract

Malformazioni congenite craniofacciali si verificano in 1 su ogni 700 nati vivi, ma l'eziologia è raramente noto a causa della limitata comprensione dello sviluppo cranio-facciale. Per identificare dove percorsi e tessuti segnalazione agiscono durante patterning del viso sviluppo, una tecnica 'trapianto di faccia' è stato sviluppato in embrioni di rana Xenopus laevis. Una regione di presuntiva tessuto facciale (il "Extreme anteriore Domain" (EAD)) viene rimosso da un embrione donatore in fase tailbud, e trapiantato in un embrione ospite della stessa fase, di cui la regione equivalente è stato rimosso. Questo può essere usato per generare una faccia chimerico in cui il tessuto ospite o donatore ha una perdita o guadagno di funzione in un gene, e / o include un'etichetta lignaggio. Dopo la guarigione, il risultato dello sviluppo è monitorato, e indica ruoli della via di segnalazione all'interno del donatore o circostanti tessuti dell'ospite. Xenopus è un modello valido per lo sviluppo viso, come la regione facciale è grande e facilmente unaccessible per micromanipolazione. Molti embrioni possono essere analizzati, nel corso di un breve periodo di tempo dal momento che lo sviluppo avviene rapidamente. I risultati nella rana sono rilevanti per lo sviluppo umano, dal momento che i processi cranio-facciali appaiono conservati tra Xenopus e mammiferi.

Introduction

Per comprendere i meccanismi alla base difetti cranio-facciali congenite 1-2, tessuti importanti e il loro contributo di segnalazione durante lo sviluppo craniofacciale deve essere identificato. Nella rana Xenopus laevis, parte del viso, compresa la bocca e la forma narici dal "Extreme anteriore Domain" (EAD), dove ectoderma e l'endoderma sono direttamente giustapposti 3-4. L'EAD funge anche da centro di segnalazione di influenzare i tessuti circostanti, tra cui la cresta neurale cranica, che forma le mascelle e altre regioni facciali 5. Per identificare i geni che contribuiscono alla funzione EAD, una tecnica di 'trapianto di faccia' è stato sviluppato, in cui il tessuto viene trapiantato da un donatore in un embrione di accoglienza, dopo aver rimosso la regione ospitante corrispondente. Seguendo il trapianto, con conseguente sviluppo facciale viene valutata. Pertanto, gli effetti della perdita di funzione (OL) o guadagno di funzione (GOF) per un gene specifico nell'EAD sono analizzati localmente, dove il resto della head e il corpo è composto di tipo selvatico tessuto. Il trapianto di reciprocità può essere effettuato, se di tipo selvatico tessuto viene trapiantato in embrioni con LOF globale o GOF in geni specifici. Il trapianto è stato frequentemente utilizzato in Xenopus e pulcino studi 6. Ad esempio, Xenopus trapianto ha affrontato induzione homogenetic neurale, obiettivo e competenza neurale, e neural crest migrazione 7-10. Quaglia-chick innesto chimerico ha analizzato lo sviluppo della piastra anteriore neurale, anteriore cresta neurale, cresta neurale, e le ossa craniche 11-14. Questa è la prima tecnica di trapianto per lo studio dello sviluppo craniofacciale in Xenopus. Questa tecnica ha dimostrato un nuovo ruolo per gli inibitori di Wnt Frzb1 e della Mezzaluna nella regolazione della formazione di membrana basale in bocca presuntiva 5. Xenopus laevis è un modello ideale per lo studio dello sviluppo cranio-facciale come embrioni sono grandi, sviluppare esternamente, unnd il volto è facilmente visibile, permettendo micromanipolazione e di imaging di sviluppo. Meccanismi sottostanti lo sviluppo del viso appaiono conservati, indicando che accertamenti effettuati nella rana forniscono informazioni in sviluppo umano 4,15-16.

Protocol

1. Reagenti Preparazione 10x MBS: Preparare 1 L di 10x modificata di Barth Saline (MBS) soluzione 17. Fare riferimento alla Tabella 1, reagenti, gli ingredienti e le istruzioni. Utilizzare acqua distillata per tutte le soluzioni. Mescolare in un bicchiere, con un ancoretta, fino al completo scioglimento. Tutte le soluzioni devono essere effettuate a temperatura ambiente. 1x MBS: Diluire 100 ml di soluzione 10x MBS in 900 ml di acqua distillata per fare 1 l di 1x MBS. Aggi…

Representative Results

Tessuto trapiantato deve essere completamente inserita nella testa ospitante dopo il trapianto, come mostrato nella Figura 3A, e hanno un ponte di vetro opportunamente posizionato sulla faccia dell'embrione, come mostrato nella Figura 2BC. Il tessuto donatore trapiantato deve essere dimensionato correttamente per l'apertura ospitante, per il trapianto abbia successo. Il tessuto EAD non deve sporgere dalla testa, in qualsiasi modo, come si vede nelle figure 3B e …

Discussion

Fasi critiche e limitazioni: La procedura di trapianto di faccia EAD è il tempo e il lavoro intenso. Si richiede pratica, mano ferma, e la destrezza di perfezionare. Il protocollo di trapianto di faccia si basa sulla capacità del ricercatore di rimuovere in modo efficiente e il tessuto di trapianto. Se si prende troppo tempo per inserire il trapianto nel volto del padrone di casa, il volto ospite inizierà a contrarsi e guarire. Pinze possono essere utilizzati per espandere delicatamente la regione facciale. Tu…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Ringraziamo Radek Šindelka per il suo aiuto, e Cas Bresilla per aiutare con la rana allevamento e preparazione embrione. Questo lavoro è stato finanziato dal NIH tramite il R01DE021109 concessione di HLS Laura Jacox è stato finanziato dalla Herschel Smith Graduate Fellowship presso la Harvard University e una borsa F30 borsa individuale F30DE022989-01 attraverso il NIDCR.

Materials

Pasteur pipette VWR 14672-400 Lime Glass 
Size 5 3/4’’ Cotton Plugged
Disposable
Graduated Transfer Pipette VWR 16001-180 Disposable 
Polyethylene
#5/45 forceps Fine Science Tools by Dupont medical 11251-35 Angled 45 degrees
Standard Pattern Forceps Fine Science Tools 11000-20 Straight; serrated tip
Stainless Steel;
20cm long
Capillary Tubing (for needles) FHC 30-30-1 Borosil 1.0mm OD x 0.5mm ID/Fiber
100mm each
Cover slip  VWR 48393 252  24x60mm 
micro cover glass or  or 
(for glass bridges) 48393 230 24x40mm
No.1.5
Ficoll 400 Sigma-Aldrich F9378
Needle Puller  Sutter Instrument Co Needle Puller: discontinued Filament: FB300B The most similar, currently available  needle puller is the P-97. For filaments, use Sutter 3.00mm square box filaments, 3.0mm wide.
Model P-80 Flaming / Brown micropipette puller
(discontinued)
Stereomicroscope Zeiss
Zeiss Stemi 1000
Stereomicroscope Lighting by Fostec Fostec Use a light box with 2 fiberoptic arms.  
Nickel Plated Pin Holder Fine Science Tools 26018-17 Jaw Opening Diameter: 0 to 1mm
Length: 17cm
Moria Nickel Plated Pin Holder Fine Science Tools 26016-12 Jaw opening Diameter: 0 to 1mm
Length: 12cm
Tungsten Needles Fine Science Tools 10130-05 0.125mm Rod diameter
Van Aken Plastalina Blick  #33268-2981
Modeling Clay- white, red or yellow
mMessage mMashine SP6 or T7 Kit Ambion AM1340

References

  1. Gorlin, R. J., Cohen, M., Levin, L. . Syndromes of the head and neck. , (1990).
  2. Trainor, P. Craniofacial birth defects: The role of neural crest cells in the etiology and pathogenesis of Treacher Collins syndrome and the potential for prevention. Am. J. Med. Gen. A. 152, 2984-2994 (2010).
  3. Dickinson, A. J., Sive, H. L. Development of the primary mouth in Xenopus laevis. Dev. Bio. 295, 700-713 (2006).
  4. Dickinson, A. J., Sive, H. L. Positioning the extreme anterior in Xenopus: cement gland, primary mouth and anterior pituitary. Sem. Cell Dev. Bio. 18, 525-533 (2007).
  5. Dickinson, A. J., Sive, H. L. The Wnt antagonists Frzb-1 and Crescent locally regulate basement membrane dissolution in the developing primary mouth. Dev. 136, 1071-1081 (2009).
  6. Gilbert, S. F. . 발생학. , (2010).
  7. Borchers, A., Epperlein, H. H., Wedlich, D. An assay system to study migratory behavior of cranial neural crest cells in Xenopus. Dev. Genes Evol. 210, 217-222 (2000).
  8. Grunz, H. Homoiogenetic neural inducing activity of the presumptive neural plate of Xenopus laevis. Dev. Growth Differ. 32, 583-589 (1990).
  9. Servetnick, M., Grainger, R. M. Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer. Dev. Bio. 112, 177-188 (1991).
  10. Servetnick, M., Grainger, R. M. Homeogenetic neural induction in Xenopus. Dev. Bio. 147, 73-82 (1991).
  11. Couly, G., Coltey, P., Le Douarin, N. The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Dev. 117, 409-429 (1993).
  12. Couly, G. F., Le Douarin, N. M. Mapping of the early neural primordium in quail-chick chimeras : I. Developmental relationships between placodes, facial ectoderm. 110, 422-439 (1985).
  13. Couly, G. F., Le Douarin, N. M. Mapping of the early neural primordium in quail-chick chimeras II. The prosencephalic neural plate and neural folds: Implications for the genesis of cephalic human congenital abnormalities. Dev. Bio. 120, 198-214 (1987).
  14. Lievre, A. L., Le Douarin, N. The early development of cranial sensory ganglia and the potentialities of their component cells studied in quail-chick chimeras. Dev. Bio. 94, 291-310 (1982).
  15. Kennedy, A., Dickinson, A. Median facial clefts in Xenopus laevis: roles of retinoic acid signaling and homeobox genes. Dev. Bio. 365, 229-240 (2012).
  16. Trainor, P., Tam, P. Cranial paraxial mesoderm and neural crest of the mouse embryo- codistribution in the craniofacial mesenchyme but distinct segregation in the branchial arches. Dev. 121, 2569-2582 (1995).
  17. Sive, H. L., Grainger, R. M., Harland, R. M. . Early Development of Xenopus laevis. , (2000).
  18. Tandon, P., Showell, C., Christine, K., Conlon, F. Morpholino injection in Xenopus. Methods Mol. Biol. 843, 29-46 (2012).
  19. Nieuwkoop, P. D., Faber, J. . Normal Table of Xenopus laevis (Daudin). , (1994).
check_url/kr/50697?article_type=t

Play Video

Cite This Article
Jacox, L. A., Dickinson, A. J., Sive, H. Facial Transplants in Xenopus laevis Embryos. J. Vis. Exp. (85), e50697, doi:10.3791/50697 (2014).

View Video