Summary

العزلة والثقافة، وزرع خلايا العضلات الأقمار الصناعية

Published: April 08, 2014
doi:

Summary

العزلة وثقافة السكان نقية من الخلايا الأقمار الصناعية هادئة، والسكان الخلايا الجذعية العضلية، أمر ضروري لفهم العضلات الجذعية بيولوجيا الخلايا وتجديدها، فضلا عن زرع الخلايا الجذعية لعلاج ضمور العضلات في والأمراض التنكسية الأخرى.

Abstract

خلايا العضلات الأقمار الصناعية هي مجموعة من السكان الخلايا الجذعية اللازمة لتطوير الهيكل العظمي والعضلات بعد الولادة والتجدد، وهو ما يمثل 2-5٪ من نوى sublaminal في الألياف العضلية. في العضلات الكبار، والخلايا الأقمار الصناعية عادة ما تكون هادئة ميتوتيكلي. بعد الاصابة، ومع ذلك، بدء انتشار الخلايا الأقمار الصناعية الخلوية لإنتاج myoblasts، السلالات، وللتوسط في تجديد العضلات. زرع الخلايا المشتقة من myoblasts الأقمار الصناعية وقد درس على نطاق واسع كعلاج ممكن لعدة أمراض التجدد بما في ذلك ضمور العضلات، وفشل القلب، وضعف الجهاز البولي. وقد أظهرت زرع Myoblast في التصنع العضلات والهيكل العظمي والقلب احتشاء، وتفكك القنوات البولية التي myoblasts المغروسة يمكن أن تفرق في ألياف العضلات في الأنسجة المضيفة وتحسين عرض وظيفية جزئية في هذه الأمراض. وبالتالي، فإن تطوير أساليب تنقية كفاءة الخلايا الأقمار الصناعية هادئة من muscl الهيكل العظميه، وكذلك إنشاء الخلية المستمدة من الثقافات myoblast الأقمار الصناعية وأساليب زرع لmyoblasts، ضرورية لفهم الآليات الجزيئية وراء خلية الفضائية التجديد الذاتي، والتنشيط، والتمايز. بالإضافة إلى ذلك، وتطوير العلاجات المستندة إلى الخلايا لضمور العضلات وأمراض أخرى التجدد تعتمد على هذه العوامل أيضا.

ومع ذلك، وأساليب تنقية المحتملين الحالية الخلايا الأقمار الصناعية هادئة تتطلب استخدام مضان تنشيط الخلايا مكلفة الفرز (FACS) الآلات. هنا، نقدم طريقة جديدة لتنقية السريع، واقتصادا، وموثوق بها الخلايا الأقمار الصناعية هادئة من الماوس الكبار العضلات والهيكل العظمي من قبل تفارق الأنزيمية تليها خلية المغناطيسي تنشيط فرز (MACS). بعد عزل الخلايا الأقمار الصناعية هادئة نقية، يمكن تربيتها هذه الخلايا للحصول على عدد كبير من myoblasts بعد عدة مقاطع. هذه معزولة طازجةالخلايا الأقمار الصناعية هادئة أو خارج الحي myoblasts توسعت يمكن زرعها في cardiotoxin (CTX) الناجم عن تجديد الماوس العضلات والهيكل العظمي لدراسة مساهمة من الخلايا المشتقة من الجهات المانحة إلى تجديد الألياف العضلية، فضلا عن المقصورات الخلية الأقمار الصناعية لدراسة التجديد الذاتي الأنشطة.

Introduction

خلايا العضلات الأقمار الصناعية هي عدد صغير من السكان من الخلايا الجذعية عضلي يقع تحت الصفيحة القاعدية من ألياف العضلات والهيكل العظمي. فهي تتميز التعبير عن Pax7، Pax3، ج الأرصاد، M-كادهيرين، CD34، Syndecan-3، والكالسيتونين 1-3. وقد أثبتت الخلايا الأقمار الصناعية لتكون مسؤولة عن تجديد العضلات والخلايا الجذعية العضلية. في العضلات الكبار، والخلايا الأقمار الصناعية عادة ما تكون هادئة ميتوتيكلي 4-8. بعد الإصابة، يتم تنشيط الخلايا الأقمار الصناعية، والشروع في التعبير عن MyoD، وأدخل دورة الخلية لتوسيع ذريتها، ووصف الخلايا السلائف عضلي أو myoblasts 3. بعد عدة جولات من انقسام الخلايا، myoblasts خروج دورة الخلية والصمامات مع بعضها البعض من أجل الخضوع التمايز في myotubes متعددة الأنوية، تليها الألياف العضلية الناضجة. Myoblasts معزولة من العضلات الكبار يمكن بسهولة توسيع فيفو السابقين. القدرة على أن تصبح myoblasts ألياف العضلات في تجديد العضلات ويتم استغلالها شكل ألياف العضلات خارج الرحم في الأنسجة nonmuscle بواسطة زرع myoblast، نهج العلاجية المحتملة لضمور العضلات دوشين (DMD) وضعف الجهاز البولي وفشل القلب 10. في الواقع، تم زرعها بنجاح myoblasts في العضلات من كلا MDX (DMD نموذج) الفئران والمرضى DMD 11-14. وmyoblasts العادي حقن تلتحم مع الألياف العضلية المضيف لتحسين الأنسجة وظيفة العضلات المريضة. أظهرت الأعمال السابقة أن المجموعات السكانية الفرعية من myoblasts هي أكثر الجذعية مثل الخلية وتظل في حالة غير متمايزة يعد في العضلات خلال تجديد العضلات 5. وقد أظهرت الأعمال الأخيرة أن الخلايا الأقمار الصناعية طازجة معزولة من العضلات الكبار تحتوي على السكان مثل الخلايا الجذعية التي يسلك engraftment أكثر كفاءة والنشاط التجديد الذاتي في تجديد العضلات 5-8. وبالتالي، تنقية من السكان نقية من الخلايا الأقمار الصناعية هادئة من مو الهيكل العظمي الكباربعد المقطع ضروري لفهم بيولوجيا الخلايا الأقمار الصناعية، وتجديد العضلات myoblasts، وتطوير العلاجات المستندة إلى الخلايا.

ومع ذلك، وأساليب تنقية المحتملين الحالية الخلايا الأقمار الصناعية هادئة تتطلب استخدام ومضان تنشيط الخلايا مكلفة الفرز (FACS) آلة 1،2،6-8. بالإضافة إلى ذلك، التعرض ليزر نظام مراقبة الأصول الميدانية تميل للحث على موت الخلايا خلال الفصل، والذي يسبب انخفاض العائد من الخلايا الأقمار الصناعية هادئة 15. هنا، نقدم طريقة جديدة لتنقية السريع، واقتصادا، وموثوق بها الخلايا الأقمار الصناعية هادئة من الماوس الكبار العضلات والهيكل العظمي. يستخدم هذا الأسلوب تفارق الأنزيمية تليها خلية المغناطيسي تنشيط فرز (MACS). بعد عزل الخلايا الأقمار الصناعية هادئة نقية، يمكن تربيتها هذه الخلايا للحصول على عدد كبير من myoblasts بعد عدة مقاطع. وتبين لنا أيضا أن الحقن العضلي من هذه الخلايا الأقمار الصناعية هادئة معزولة طازجة أو السابقين السادسيمكن زرعها فو توسيع myoblasts في cardiotoxin (CTX) الناجم عن تجديد الماوس العضلات والهيكل العظمي لدراسة مساهمة من الخلايا المشتقة من الجهات المانحة إلى تجديد الألياف العضلية، فضلا عن المقصورات الخلية الأقمار الصناعية لفحص أنشطة التجديد الذاتي.

Protocol

وتم إيواء الحيوانات في بيئة SPF وتم رصدها من قبل بحوث الثروة الحيوانية (RAR) من جامعة مينيسوتا. . الموت الرحيم كانت الحيوانات بالوسائل الملائمة (CO 2 الاستنشاق أو الحقن بوكل بعد تخدير مع حقن IP من آفيرتين (250 ملغ / كلغ) وقد وافق جميع البروتوكولات من قبل اللجنة المؤسسية ر?…

Representative Results

الخلايا الأقمار الصناعية هادئة معزولة طازجة عرض، شكل جولة صغيرة (الشكل 1G)، وPax7 صريحة كعلامة نهائية لخلايا الأقمار الصناعية هادئة. أكثر من 90٪ من خلايا معزولة طازجة تعبير عن Pax7 (الشكل 1H و1I). الخلايا الملوثة هي أكثر من خلايا الدم التي لا تنمو في المخت?…

Discussion

في هذا البروتوكول، والخلايا الأقمار الصناعية هادئة يمكن تنقية بسهولة من العضلات والهيكل العظمي الكبار من الفئران عن طريق الهضم كولاجيناز والسطح بوساطة الأضداد MACS الانفصال. هذا الأسلوب يستغرق حوالي 6 ساعات و لا تحتاج إلى أي معدات باهظة الثمن مثل جهاز نظام مراقبة الأ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

نشكر الدكتور Shahragim تاجبخش لتوفير الفئران Myf5 + / nLacZ. نشكر أيضا الكسندر Hron ومايكل Baumrucker لقراءة نقدية لهذه المخطوطة. وأيد هذا العمل من المنح المقدمة من جمعية الضمور العضلي (MDA) وغريغوري Marzolf جونيور جائزة مركز MD.

Materials

Materials
Collagenase Type 2 Worthington CLS-2 100 mg
Marigel BD Biosciences 356234 5 ml
DMEM Gibco-Invitrogen 10569010 500 ml
Collagen (Rat Tail) BD Biosciences 354236 100 mg (3-4 mg/ml)
Acetic Acid Sigma-Aldrich 320099-500ML 500 ml
bFGF, human, Recombinant Gibco-Invitrogen PHG0263 1 mg
Bovine Serum Albumin (BSA) Sigma-Aldrich A5611-1G 1 g
Ham’s F10 Medium Gibco-Invitrogen 11550-043 500 ml
Fetal Bovine Serum (FBS) Fisher Scientific 3600511 500 ml
Horse Serum Gibco-Invitrogen 26050088 500 ml
Penicillin/Streptmycin Gibco-Invitrogen 15640055 100 ml
Phosphate Buffered Saline Gibco-Invitrogen 14190144 500 ml
0.25% Trypsin/EDTA Gibco-Invitrogen 25200072 500 ml
18G needle with 12cc Syringe Fisher Scientific 22-256-563
Cell strainer (70 μm) Fisher Scientific 22-363-548
Falcon 50 ml tube BD Biosciences 352098
Falcon 15 ml tube BD Biosciences 352097
10 cm tissue culture plate BD Biosciences 353003
6 cm tissue culture plate BD Biosciences 353004
Falcon 10 ml disposable pipet BD Biosciences 357551
Anti-CD31 antibody-PE eBiosciences 12-0311
Anti-CD45 antibody-PE eBiosciences 30-F11
Anti-Sca1 antibody-PE eBiosciences Dec-81
Anti-Integrin α7 antibody MBL International ABIN487462
Anti-PE MicroBeads Miltenyi Biotec 130-048-801
Anti-Mouse IgG MicroBeads Miltenyi Biotec 130-048-402
Mini & MidiMACS Starting Kit Miltenyi Biotec 130-091-632
MS Column Miltenyi Biotec 130-042-201
LD Column Miltenyi Biotec 130-042-901
Cardiotoxin Sigma Aldrich C9759-1MG Stock 10 μM in PBS
31G Insulin syringe BD Biosciences 328438
Refrigerated Microcentrifuge (Microfuge 22R) Beckman Coulter 368826
S241.5 Swinging Bucket Rotor Beckman Coulter 368882
Refrigerated Centrifuge (Allegra X-22R) Beckman Coulter 392187
Nod/Scid immunodeficient mice Charles River Laboratories Strain Code 394 Use 2 months old mice
Reagents
Name of the reagent Recipie
10% and 2% FBS DMEM DMEM (Gibco-Invitrogen #10569010) with 10% or 2% FBS (Fisher Scientific #03600511) and 1% Penicillin/Streptomycin (Gibco-Invitrogen #15640055).
0.2% Collagenase solution Collagenase Type 2 (Worthington, #CLS-2), Stock: 50 ml: 100 mg Collagenase Type 2 in 10% FBS DMEM.
10% Matrigel solution Matrigel (BD Biosciences: #356234) is placed on ice for thawing overnight. Five ml Matrigel is dilute by 45 ml DMEM and 5 ml aliquots are stored at -20°C until use.
Matrigel-coated plate Five ml of 10% Matrigel solution is placed on ice for thawing and is used for coating 10 cm plate at room temprature for 1 minutes. The plate is placed in 5% CO2 incubator at 37°C for 30 minute after removing Matrigel solution, and let the plate dry in culture hood for another 30 minutes. Removed 10% Matrigel solution is stored at -20°C for reusing.
0.01% Collagen solution Mix to final: 0.01% Collagen (Collagen, Rat Tail: BD Biosciences #354236) in 0.2% acetic acid (320099-500ML) in ddH2O.
Collagen-coated plate Add 5 ml or 2 ml of Collagen solution to a 10 cm or 6 cm tissue culture plate and let sit at room temperature for three hours. Then, aspirate off liquid and allow to dry in culture hood for 30 min to overnight. Plates can be stored at room temperature for several months.
bFGF stock solution bFGF, Human, Recombinant (Gibco-Invitrogen #PHG0263, 1 mg) is dissolved with 0.1% BSA solution consisting of 1 mg BSA (Sigma-Aldrich #A5611-1G) and 2 ml ddH2O (0.5 mg/ml bFGF). Aliquot 20 μl in 500 μl microcentrifuge tubes and kept in -80°C.
Myoblast medium 500 mL HAM’S F10 Medium (Gibco-Invitrogen #11550-043) supplemented with 20% FBS (Fisher Scientific #03600511), Penicillin/streptomycin (Gibco-Invitrogen #15640055), and 10 μg of bFGF (20 μl of bFGF stock).
Differentiation medium 500 mL DMEM (Gibco-Invitrogen #10569010) supplemented with 5% Horse serum (Gibco-Invitrogen #26050088) and 1% Penicillin/streptomycin (Gibco-Invitrogen #15640055).
10 μM Cardiotoxin stock 1 mg Cardiotoxin (EMD Millipore #217504-1MG) is dissolved with 13.9 ml PBS.

References

  1. Fukada, S., et al. Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Exp. Cell Res. 296, 245-255 (2004).
  2. Hirai, H., Verma, M., Watanabe, S. C. T., Asakura, Y., Asakura, A. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J. Cell Biol. (191), 347-365 (2010).
  3. Asakura, A. Stem cells in adult skeletal muscle. Trends Cardiovasc. Med. 13, 123-128 (2003).
  4. Partridge, T. A. Cells that participate in regeneration of skeletal muscle. Gene Ther. 9, 752-753 (2002).
  5. Collins, C. A., et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell. 122, 289-301 (2005).
  6. Montarras, D., et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 309, 2064-2067 (2005).
  7. Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S., Blau, H. M. Self-renewal and expansion of single transplanted muscle stem cells. Nature. 456, 502-506 (2008).
  8. Conboy, M. J., Cerletti, M., Wagers, A. J., Conboy, I. M. Immuno-analysis and FACS sorting of adult muscle fiber-associated stem/precursor cells. Methods Mol. Biol. 621, 165-173 (2010).
  9. Yokoyama, T., Huard, J., Chancellor, M. B. Myoblast therapy for stress urinary incontinence and bladder dysfunction. World J. Urol. 18, 56-61 (2000).
  10. Menasche, P. Skeletal muscle satellite cell transplantation. Cardiovasc. Res. 58, 351-357 (2000).
  11. Huard, J., et al. Myoblast transplantation produced dystrophin-positive muscle fibres in a 16-year-old patient with Duchenne muscular dystrophy. Clin. Sci. 81, 287-288 (1991).
  12. Tremblay, J. P., et al. Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant. 2, 99-112 (1993).
  13. Gussoni, E., Blau, H. M., Kunkel, L. M. The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat. Med. 3, 970-977 (1997).
  14. Palmieri, B., Tremblay, J. P., Daniele, L. Past, present and future of myoblast transplantation in the treatment of Duchenne muscular dystrophy. Pediatr. Transplant. 14, 813-819 (2010).
  15. Mollet, M., Godoy-Silva, R., Berdugo, C., Chalmers, J. J. Acute hydrodynamic forces and apoptosis: a complex question. Biotechnol. Bioeng. 98, 772-788 (2007).
  16. Asakura, A., Rudnicki, M. A. Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp. Hematol. 30, 1339-1345 (2002).
  17. Asakura, A., et al. Increased survival of muscle stem cells lacking the MyoD gene after transplantation into regenerating skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 104, 16552-16557 (2007).
  18. Gerard, X., et al. Real-time monitoring of cell transplantation in mouse dystrophic muscles by a secreted alkaline phosphatase reporter gene. Gene Ther. 16, 815-819 .
  19. Tajbakhsh, S., Rocancourt, D., Cossu, G., Buckingham, M. Redefining the genetic hierarchies controlling skeletal myogenesis Pax-3 and Myf-5 act upstream of MyoD. Cell. 89, 127-138 (1997).
  20. Beauchamp, J. R., et al. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J. Cell Biol. 151, 1221-1134 (2000).
  21. Sabourin, L. A., Girgis-Gabardo, A., Seale, P., Asakura, A., Rudnicki, M. A. Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J. Cell Biol. 144, 631-643 (1999).
  22. Bischoff, R. Regeneration of single skeletal muscle fibers in vitro. Anat. Rec. 182, 215-235 (1975).
  23. Asakura, A., Seale, P., Girgis-Gabardo, A., Rudnicki, M. A. Myogenic specification of side population cells in skeletal muscle. J. Cell Biol. 159, 123-134 (2002).
  24. Kuang, S., Kuroda, K., Le Grand, F., Rudnicki, M. A. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell. 129, 999-1010 (2007).
  25. Cerletti, M., et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell. 134, 37-47 (2008).
  26. Farina, N. H., et al. A role for RNA post-transcriptional regulation in satellite cell activation. Skelet. Muscle. 2, 21-21 (2012).
  27. Tanaka, K. K., Hall, J. K., Troy, A. A., Cornelison, D. D., Majka, S. M., Olwin, B. B. Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell. 4, 217-225 (2009).
  28. Pallafacchina, G., et al. An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res. 4, 77-91 (2009).
check_url/kr/50846?article_type=t

Play Video

Cite This Article
Motohashi, N., Asakura, Y., Asakura, A. Isolation, Culture, and Transplantation of Muscle Satellite Cells. J. Vis. Exp. (86), e50846, doi:10.3791/50846 (2014).

View Video