Summary

用于识别传染性朊病毒通过后通过一个鸟类的消化系统程序

Published: November 06, 2013
doi:

Summary

清除剂具有潜在的易位感染传染性海绵状脑病朊病毒在其粪便到无病的区域。我们用来确定是否通路虽然美国乌鸦的消化道( 乌鸦brachyrhynchos),死亡动物的共同消费后小鼠适应痒病朊病毒保持传染性细节的方法。

Abstract

传染性朊病毒(PrP的住宅 )的材料很可能是致命的,神经退行性传染性海绵状脑病(TSE)的疾病病因1。谢性疾病,如慢性消耗性疾病(CWD)的传输,被假定为从动物到动物2,3以及从环境来源4-6。清除剂和食肉动物有潜力通过消费和CWD污染腐肉的排泄,转运的PrP 住宅材料。最近的工作已经通过美国乌鸦的消化系统( 乌鸦座brachyrhynchos),一个共同的北美清道夫7记载的PrP的住宅的材料通过。

我们描述的程序用于通过美国乌鸦记录的PrP的住宅的材料通过。乌鸦被灌服RML株小鼠适应痒病和他们的粪便收集4小时后灌服。乌鸦粪便,然后汇集和腹腔注射进C57BL / 6小鼠。小鼠每天监测,直到他们表示鼠标瘙痒病的临床症状,并随后实施安乐死。无症状的小鼠进行了监测,直到接种365天岗位。 Western blot分析进行确认疾病状态。结果表明,朊病毒通过乌鸦消化系统行驶后保持感染性和存在于粪便中,引起疾病中测试小鼠。

Introduction

传染性海绵状脑病(TSE)是致命的感染性神经退行性疾病,影响野生动物,家养动物和人类。谢疾病的传染性病原体似乎是朊蛋白1的错误折叠或致病亚型(PRP 住宅 )。动物TSE疾病包括慢性消耗性疾病(CWD)的黑尾鹿( 白尾野驴 ),白尾鹿( 白尾virginianus)来说 ,麋鹿( 马鹿 ),和驼鹿( 驼鹿 );痒病的绵羊和山羊,牛海绵状脑病( BSE)在国内的牛,在养殖水貂传染性水貂脑病;猫猫海绵状脑病,在异国情调的异国情调的动物园有蹄类动物海绵状脑病反刍的牛科家族;及海绵状脑病在非人灵长类动物8。单人谢氏病,变异型克雅氏病,是罕见的,认为通过消耗PrP的住宅 -康泰明收购ATED食物9。同样,疯牛病可以感染人类,如果被污染的牛肉消耗10。所有TSE疾病,痒病和CWD是仅有的两个具有自我维持的流行病和源感染被假定为从动物到动物2,3,11以及从环境源4-6。研究表明,大多数TSE疾病需要从PrP的住宅的材料自然暴露事件显着延长潜伏期的临床症状表现2-4,6,8和表观物种界限减少,但不排除对,种间传播12-14的潜力。

识别机制传染性朊病毒(PrP的住宅 )物质的扩散是回答有关TSE疾病在景观是如何移动的问题极为重要。实验研究表明,昆虫15,16,家禽和猪17日 ,美国和乌鸦( 乌鸦座曼布拉克hyrhynchos)7,18是PrP的住宅材料的被动载体或传播者。通过乌鸦的消化系统通道的PrP的住宅的材料最近被记录在案,这表明他们在谢病7分散可能发挥的作用。这些结果使得合理的,乌鸦,一个清道夫,可能会遇到,消费,并通过粪便沉积运输传染性物质,对无病的地区。

我们在这里展示的程序是用来通过乌鸦的消解系统记录的PrP的住宅的材料通道,将极大地促进这些方法应用到其他净化剂和食肉动物物种特异性的车型在今后的相关研究。在这项研究中传统的方法被用来研究人口贩运的PrP 住宅材料,这可能有助于PrP的住宅材料的扩散和总体负担的非常规手段。

Protocol

我们的协议是改编自一个大家此前公布的7。所有涉及动物的程序已获农业部美国农业部(USDA),动植物健康检验局(APHIS),野生动物服务(WS),国家野生动物研究中心(NWRC)的机构动物护理和使用委员会。 1。乌鸦Gavaging 通过美国乌鸦的消化道估计的“伪大脑物质”通过时间。 将5毫升煮和炒鸡蛋全用蓝色染料和灌胃1乌鸦用灌胃针2( 图1)。<…

Representative Results

所使用的程序表明,乌鸦的消化系统并不之后的痒病脑匀浆7口灌胃消除朊病毒住宅感染4小时。这是灌服PrP的住宅的材料全部20只乌鸦随后通过粪便传播的PrP 住宅材料老鼠。病鼠均经临床鼠标痒病体征和疾病的确认通过Western blot分析完成的体现。 通过消化道的灌胃乌鸦为4小时,根据染料的粪便中存在( 图1)的材料由乌鸦摄入的?…

Discussion

我们展示了一个过程,通过乌鸦的消化系统记录的PrP的住宅的材料通过。我们所用的常规方法,以确定是否有乌鸦易位的PrP 住宅材料到无病的地理区域的能力。他人已经评估的PrP 分辨率的电阻给反刍19-21和啮齿类22,23消化液,两者不能消除它。这些技术未来的应用应该可以应用到其他食肉动物24,因为他们也有可能遇到的PrP 住宅材料腐肉?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢S.沃纳提供在这项研究中,并使用美国农业部的乌鸦,美国动植物检疫局,WS,NWRC照顾动物的工作人员对动物的照顾和监控。提及或使用产品并不意味着美国农业部认可。资助这项研究是由美国农业部动植物检疫局,兽医服务提供。

Materials

RML Chandler strain mouse-adapted scrapie Rocky Mountain Laboratories
RC57BL/6 mice Hilltop Lab Animals
American crows wild captured
Pen/Strep Invitrogen 15140-122
Phosphate buffered Saline Invitrogen 70011-044
Sonicator Misonix
Proteinase-K solution Roche 3115887001
Loading buffer Invitrogen NP0007 and 0009
Bis-tris SDS PAGE 12% gel Invitrogen NP0342
Immobilon PVDF membrane Millipore 1SEQ00010
Tween 20 Sigma Aldrich P2287
Bullet blender homogenizer Braintree Scientific BBX24B
2.3 mm Zirconia/silica beads BioSpec Products 11079125Z
Bar224 anti-PrP monoclonal antibody Cayman Chemical 10009035
Superblock Thermo Scientific 37517
chemiluminescent substrate Millipore WBKLS0500
G-box gel documentation system Syngene

References

  1. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science. 216 (4542), 136-144 (1982).
  2. Miller, M. W., Williams, E. S., et al. Epizootiology of chronic wasting disease in free-ranging cervids in Colorado and Wyoming. Journal of Wildlife Diseases. 36 (4), 676-690 (2000).
  3. Miller, M. W., Williams, E. S. Horizontal prion transmission in mule deer. Nature. 425 (6953), 35-36 (2003).
  4. Sigurdson, C. J., Adriano, A. Chronic Wasting Disease. Biochimica et Biophysica Acta. 1772 (6), 610-618 (2007).
  5. Miller, M. W., Williams, E. S., Hobbs, N. T., Wolfe, L. L. Environmental sources of prion transmission in mule deer. Emerging Infectious Diseases. 10 (6), 1003-1006 (2004).
  6. Mathiason, C. K., Hays, S. A., et al. Infectious prions in pre-clinical deer and transmission of chronic wasting disease solely by environmental exposure. PLoS ONE. 4 (6), e5916 (2009).
  7. VerCauteren, K. C., Pilon, J. L., Nash, P. B., Phillips, G. E., Fischer, J. W. Prion remains infectious after passage through digestive system of American crows (Corvus crachyrhunchos). PLoS ONE. 7 (10), e45774 (2012).
  8. Imran, M., Mahmood, S. An overview of animal prion diseases. Virology Journal. 8 (493), (2011).
  9. Watts, J. C., Balachandran, A., Westaway, D. The expanding universe of prion disease. PLoS PATHOGENS. 2 (3), e26 (2006).
  10. Bruce, M. E., et al. Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature. 389 (6650), 498-501 (1997).
  11. Ryder, S., Dexter, G., Bellworty, S., Tongue, S. Demonstration of lateral transmission of scrapie between sheep kept under natural conditions using lymphoid tissue biopsy. Research in Veterinary Science. 76 (2004), 211-217 (2004).
  12. Collinge, J. The risk of prion zoonoses. Science. 335 (6067), 411-413 (2012).
  13. Beringue, V., Vilotte, J. L., Laude, H. Prion agent diversity and species barrier. Veterinary Research. 39 (47), (2008).
  14. Harrington, R. D., Baszler, T., et al. A species barrier limits transmission of chronic wasting disease to mink (Mustela vison). The Journal of General Virology. 89 (4), 1086-1096 (2008).
  15. Wisniewski, H. M., Sigurdarson, S., Rubenstein, R., Kascsak, R. J., Carp, R. I. Mites as vectors for scrapie. Lancet. 347 (9008), 1114 (1996).
  16. Post, K., Riesner, D., Walldorf, V., Mehlhorn, H. Fly larvae and pupae as vectors for scrapie. Lancet. 354 (9194), 1969-1970 (1999).
  17. Matthews, D., Cooke, B. C. The potential for transmissible spongiform encephalopathies in non-ruminant livestock and fish. Revue Scientifique Et Technique-Office International Des Epizooties. 22 (1), 283-296 (2003).
  18. Jennelle, C. S., Samuel, M. D., Nolden, C. A., Berkley EA, . Deer carcass decomposition and potential scavenger exposure to chronic wasting disease. Journal of Wildlife Management. 73 (5), 655-662 (2009).
  19. Scherbel, C., Pichner, R., et al. Degradation of scrapie associated prion protein (PrPSc) by the gastrointestinal microbiota of cattle. Veterinary Research. 37 (5), 695-703 (2006).
  20. Jeffrey, M., Gonzaález, L., et al. Transportation of prion protein across the intestinal mucosa of scrapie susceptible and scrapie-resistant sheep. Journal of Pathology. 209 (1), 4-14 (2006).
  21. Nicholson, E. M., Richt, J. A., Rasmussen, M. A., Hamir, A. N., Lebepe-Mazur, S., Horst, R. L. Exposure of sheep scrapie brain homogenate to rumen-simulating conditions does not result in a reduction of PrP(Sc) levels. Letters in Applied Microbiology. 44 (6), 631-636 (2007).
  22. Motes C, M. a. l. u. q. u. e. r. d. e., Grassi, J., et al. Excretion of BSE and scrapie prions in stools from murine models. Veterinary Microbiology. 131 (1-2), 205-211 (2008).
  23. Kruger, D., Thomzig, A., Lenz, G., Kampf, K., McBride, P., Beekes, M. Faecal shedding, alimentary clearance and intestinal spread of prions in hamsters fed with scrapie. Veterinary Research. 40 (1), 4 (2009).
  24. Mathiason, C. K., Nalls, A. V., et al. Susceptibility of domestic cats to chronic wasting disease. Journal of Virology. 87 (4), 1947-1956 (2013).
  25. Bjorndal, K. A. Flexibility of digestive responses in two generalist herbivores, the tortoises Geochelone carbonaria and Geochelone denticulate. Oecologia. 78 (3), 317-321 (1989).
  26. Clark, R. G., Gentle, G. C. Estimates of grain passage time in captive mallards. Canadian Journal of Zoology. 68 (11), 2275-2279 (1990).
  27. Dierenfeld, E. S., Koontz, F. W. Feed intake, digestion and passage of proboscis monkey (Nasalis larvatus) in captivity. Primates. 33 (3), 399-405 (1992).
  28. Thompson, A. K., Samuel, M. D., Van Deelen, T. R. Alternative feeding strategies and potential disease transmission in Wisconsin white-tailed deer. Journal of Wildlife Management. 72 (2), 416-421 (2008).
  29. Pulford, B., Spraker, T. A., et al. Detection of PrPCWD in feces from naturally exposed Rocky Mountain elk (Cervus elaphus nelsoni) using protein misfolding cyclic amplification. Journal of Wildlife Diseases. 48 (2), 425-433 (2012).
  30. Hicks, R. E. Guano deposition in an Oklahoma crow roost. Condor. 81 (3), 247-250 (1979).
  31. Aldous, S. E. Winter habits of crows in Oklahoma. Journal of Wildlife Management. 73 (4), 290-295 (1944).
check_url/kr/50853?article_type=t

Play Video

Cite This Article
Fischer, J. W., Nichols, T. A., Phillips, G. E., VerCauteren, K. C. Procedures for Identifying Infectious Prions After Passage Through the Digestive System of an Avian Species. J. Vis. Exp. (81), e50853, doi:10.3791/50853 (2013).

View Video