Summary

成神经细胞迁移的小鼠急性脑片在体内电穿孔产后和时间推移成像

Published: November 25, 2013
doi:

Summary

成神经细胞迁移是在出生后的神经发生一个根本性的事件。我们描述了一个协议,用于使用急性脑片时间推移成像产后体内电穿孔和随后的迁移可视化的神经母细胞的有效标记。我们包括用于通过视频跟踪神经细胞动力学的定量分析的描述。

Abstract

脑室下区(SVZ)是在出生后大脑中的主神经利基之一。在这里,神经祖细胞增殖和神经母细胞能够沿着喙迁移流(RMS)对嗅球(OB)的移动引起。这种长距离的迁移需要在OB的新生神经元的后续成熟,但调控这一过程的分子机制仍不清楚。调查信号通路控制神经细胞活动力可能不仅有助于了解神经发生的基本步骤,同时也有治疗再生潜能,给了这些神经母细胞的目标受到损伤,中风或脑退化站点的能力。

在这个手稿,我们描述了在体内产后电穿孔,并在小鼠RMS的成神经细胞迁移的随后的时间推移成像的详细协议。产后电穿孔能有效转染SVZ祖细胞,从而产生神经母细胞沿RMS迁移。利用共聚焦旋转盘时间推移显微镜对急性脑切片培养,成神经细胞迁移可以在非常类似于在体内条件下的环境进行监测。此外,成神经细胞活力可以跟踪和定量分析。作为一个例子,我们描述了如何使用表达GFP的质粒在体内电穿孔产后标记和可视化的神经母细胞沿RMS迁移。在条件性敲除小鼠用人的loxP系统或shRNA的Cre重组酶表达质粒电穿孔也可用于靶向感兴趣的基因。药理操纵急性脑片培养可以进行调查不同的信号分子在神经细胞迁移中的作用。通过耦合在体内电穿孔随着时间推移成像,我们希望了解控制神经细胞活力的分子机制,并有助于开发小说换货方法来促进大脑修复。

Introduction

在哺乳动物的大脑,新的神经元(神经)的一代出生后主要发生在两个区域,海马1的齿状回侧脑室和颗粒下层区的脑室下区(SVZ)。聚集在近年来相当多的证据支持对出生后神经发生在海马和嗅球记忆功能1-3的关键作用。重要的是,出生后的神经也持治疗的潜力,因为它与神经退行性疾病的关系,以及神经母细胞迁移到损伤部位在大脑4-6的能力。

脑室下区(SVZ)最近成为一个重要的神经利基。 SVZ来源的神经母细胞对嗅球(OB)通过喙迁移流(RMS)的迁移,使这个在产后大脑1,7,8最长的迁移过程。哺乳动物SVZ / RMS / OB系统已成为一个研究在神经发生不同的步骤,如增殖,迁移和分化1,8有用的模型。许多生长因子和细胞外调节线索SVZ神经发生和迁移沿RMS,但细胞内的分子机制还远远没有得到充分的理解1,9。沿着正确的RMS迁移是新生神经元10的后续成熟至关重要。此外,一些研究表明,SVZ来源的神经母细胞能出的RMS迁移到脑损伤部位4-6,11-13。因此,调查的信令机制,调节神经细胞迁移的根本不仅要了解神经同时也为潜在的治疗应用。

在这里,我们描述了一个详细的协议通过体内电穿孔产后标记SVZ神经祖细胞和使用时间推移旋转盘共聚焦microsco监控他们沿着急性脑切片培养的RMS迁移PY。电穿孔技术被广泛应用于从胚胎到成人阶段14-18发育研究。它是一个强大的工具,目标和操作SVZ神经祖细胞,代表了更便宜和相当快的替代立体定向注射病毒载体转基因模型1,15,19,20或生成。这是一个相对简单的过程,这并不需要手术,并具有高的存活率。电穿孔或shRNA的小鼠遗传模型采用的LoxP系统可用于靶向感兴趣的基因或实现SVZ祖细胞的永久标记,从而表示对成年神经发生的研究21,22的有用工具Cre重组酶表达质粒的构建。

在完整的脑成像RMS的神经细胞迁移仍是由于目前的技术限制的挑战。然而,这个过程可以使用急性脑切片,这提供了合适的共聚焦系统·旋转盘时间推移显微镜进行监测EM相像的体内条件也适合进行药物处理23,24。耦合产后体内电穿孔随着时间推移成像将有助于控制神经细胞活力的分子机制的理解,并有助于为新的方法来促进大脑修复的发展。

Protocol

这个程序是按照英国内政部规定(动物科学程序法,1986)。科学家应该遵循建立并获当地机构和国家动物监管机构的指引。 1。产后电穿孔 1.1。玻璃毛细管,DNA解决方案和电穿孔仪的研制用于DNA注射准备拉玻璃毛细管(0.86 mm外径:1.5毫米,ID)。 (对于萨特的P-97毛细管拉马指示设置是:热火283;拉50,速度90,时间50)。使在对应于约2微升体积的毛?…

Representative Results

的SVZ来源的成神经细胞迁移性标签可以沿着RMS可以观察到,一个成功的电穿孔( 图1B)之后,通常4-8天。更长的时间点,也可以选择,但较少的细胞会在RMS中找到,因为他们大多会已经进入了转播。成神经细胞开始采集成熟粒细胞中的OB的典型形态学特征和电穿孔后约2-3周(未示出)。 〜1小时培养后,从电穿孔的乳鼠脑切片能够可靠地拍摄长达3-4小时。据此前报道23,26,神经…

Discussion

神经祖细胞沿RMS有效的迁移,确保他们的后续成熟为功能性的神经元10。神经祖细胞的朝向突出的OB流是可见的人类婴儿期,并有可能在出生后早期人类大脑发育27起到重要的作用。此外,这些细胞能够靶向脑受损伤和神经退行性变4,28的位点。能够实时监控基因操作对成神经细胞动力学的影响就显得至关重要,充分了解神经细胞的运动引导和规范。

在?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

MS和YZ是由KCL和KCL-中国博士学位奖学金支持。 MO是由一个生物技术和生物科学研究理事会博士助学金。我们感谢冈部胜和淳一宫崎的PCX-EGFP质粒和Alain Chedotal和雅典娜伊普西兰蒂上电宝贵意见。

Materials

Millicell Millipore PICM0RG50
35 mm Glass bottom culture dish MatTek P35G-0-14-C
Gey's Balanced media Sigma G9779-500ML
Glucose, 45% Sigma G8769-100ML
HEPES Sigma H3375-25G
Pen/Strep GIBCO 15140-122
FCS GIBCO 10109-163
B27 supplement Invitrogen Life Technologies 17504044
L-Glutamine Invitrogen Life Technologies 25030-081
DMEM (phenol red-free) GIBCO 31053-028
Fast Green Sigma F7252-5G
Glass capillaries for injection Harvard Apparatus 30-0057
Aspirator tube Sigma A5177
Sutter P-97 capillary puller Sutter Instrument P-97
ECM830 Square Wave Electroporator Harvard Apparatus 45-0052
Platinum Tweezertrodes 7 mm Harvard Apparatus 45-0488
Footswitch Model 1250F Harvard Apparatus 45-0211
Gel for electrodes Cefar Compex 6602048
Isoflurane Merial AP/DRUGS/220/96
Vibratome Leica VT1000S
Glue Roti coll Roti coll 1
UltraViEW VoX spinning disk system Perkin Elmer Customized setup (multiple laser sources can be used) equipped with Hamamatsu ORCA R2 C10600-10B CCD camera
Volocity software Perkin Elmer Acquisition, Quantitation, Visualization Modules
Environmental chamber for microscopy Solent Scientific Custom-made
Ti-E inverted microscope Nikon CFI Super Plan Fluor ELWD 20X/0.45 NA objective is recommended for the application described in this paper

References

  1. Ming, G. L., Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 70, 687-702 (2011).
  2. Deng, W., Aimone, J. B., Gage, F. H. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and. 11, 339-350 (2010).
  3. Lazarini, F., Lledo, P. M. Is adult neurogenesis essential for olfaction?. Trends Neurosci. 34, 20-30 (2011).
  4. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963-970 (2002).
  5. Emsley, J. G., Hagg, T. alpha6beta1 integrin directs migration of neuronal precursors in adult mouse forebrain. Exp. Neurol. 183, 273-285 (2003).
  6. Sundholm-Peters, N. L., Yang, H. K., Goings, G. E., Walker, A. S., Szele, F. G. Subventricular zone neuroblasts emigrate toward cortical lesions. J. Neuropathol. Exp. Neurol. 64, 1089-1100 (2005).
  7. Doetsch, F., Alvarez-Buylla, A. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc. Natl. Acad. Sci. U.S.A. 93, 14895-14900 (1996).
  8. Ming, G. L., Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223-250 (2005).
  9. Pathania, M., Yan, L. D., Bordey, A. A symphony of signals conducts early and late stages of adult neurogenesis. Neuropharmacology. 58, 865-876 (2010).
  10. Belvindrah, R., Nissant, A., Lledo, P. M. Abnormal neuronal migration changes the fate of developing neurons in the postnatal olfactory bulb. J. Neurosci. 31, 7551-7562 (2011).
  11. Gotts, J. E., Chesselet, M. F. Mechanisms of subventricular zone expansion after focal cortical ischemic injury. J. Comp. Neurol. 488, 201-214 (2005).
  12. Goings, G. E., Sahni, V., Szele, F. G. Migration patterns of subventricular zone cells in adult mice change after cerebral cortex injury. Brain Res. 996, 213-226 (2004).
  13. Romanko, M. J., et al. Roles of the mammalian subventricular zone in cell replacement after brain injury. Prog. Neurobiol. 74, 77-99 (2004).
  14. Saito, T. In vivo electroporation in the embryonic mouse central nervous system. Nat. Protoc. 1, 1552-1558 (2006).
  15. Boutin, C., Diestel, S., Desoeuvre, A., Tiveron, M. C., Cremer, H. Efficient in vivo electroporation of the postnatal rodent forebrain. PloS One. 3, e1883 (2008).
  16. Barnabe-Heider, F., et al. Genetic manipulation of adult mouse neurogenic niches by in vivo electroporation. Nat. Methods. 5, 189-196 (2008).
  17. Platel, J. C., et al. NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron. 65, 859-872 (2010).
  18. Pathania, M., et al. miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons. PloS One. 7, e38174 (2012).
  19. dal Maschio, M., M, , et al. High-performance and site-directed in utero electroporation by a triple-electrode probe. Nat. Commun. 3, 960 (2012).
  20. Oudin, M. J., et al. Endocannabinoids regulate the migration of subventricular zone-derived neuroblasts in the postnatal brain. J. Neurosci. 31, 4000-4011 (2011).
  21. Lacar, B., Young, S. Z., Platel, J. C., Bordey, A. Imaging and recording subventricular zone progenitor cells in live tissue of postnatal mice. Front. Neurosci. 4, (2010).
  22. Feliciano, D. M., Lafourcade, C. A., Bordey, A. Neonatal subventricular zone electroporation. J. Vis. Exp. (72), e50197 (2013).
  23. Nam, S. C., et al. Dynamic features of postnatal subventricular zone cell motility: a two-photon time-lapse study. J. Comp. Neurol. 505, 190-208 (2007).
  24. James, R., Kim, Y., Hockberger, P. E., Szele, F. G. Subventricular zone cell migration: lessons from quantitative two-photon microscopy. Front. Neurosci. 5, 30 (2011).
  25. Fernandez, M. E., Croce, S., Boutin, C., Cremer, H., Raineteau, O. Targeted electroporation of defined lateral ventricular walls: a novel and rapid method to study fate specification during postnatal forebrain neurogenesis. Neural Dev. 6, 13 (2011).
  26. Saha, B., Ypsilanti, A. R., Boutin, C., Cremer, H., Chedotal, A. Plexin-b2 regulates the proliferation and migration of neuroblasts in the postnatal and adult subventricular zone. J. Neurosci. 32, 16892-16905 (2012).
  27. Sanai, N., et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 478, 382-386 (2011).
  28. Tattersfield, A. S., et al. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington’s disease. 신경과학. 127, 319-332 (2004).
  29. Niwa, H., Yamamura, K., Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 108, 193-199 (1991).
  30. Lledo, P. M., Alonso, M., Grubb, M. S. Adult neurogenesis and functional plasticity in neuronal circuits. Nat. Rev. Neurosci. 7, 179-193 (2006).
  31. Khlghatyan, J., Saghatelyan, A. Time-lapse imaging of neuroblast migration in acute slices of the adult mouse forebrain. J. Vis. Exp. (67), e4061 (2012).
  32. Snapyan, M., et al. Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J. Neurosci. 29, 4172-4188 (2009).
  33. Platel, J. C., Heintz, T., Young, S., Gordon, V., Bordey, A. Tonic activation of GLUK5 kainate receptors decreases neuroblast migration in whole-mounts of the subventricular zone. J. Physiol. 586, 3783-3793 (2008).
  34. Schaar, B. T., McConnell, S. K. Cytoskeletal coordination during neuronal migration. Proc. Natl. Acad. Sci. U.S.A. 102, 13652-13657 (2005).
  35. Valiente, M., Marin, O. Neuronal migration mechanisms in development and disease. Curr.Opin. Neurobiol. 20, 68-78 (2010).
  36. Comte, I., et al. Galectin-3 maintains cell motility from the subventricular zone to the olfactory bulb. J. Cell Sci. 124, 2438-2447 (2011).
  37. Sonego, M., et al. Fascin regulates the migration of subventricular zone-derived neuroblasts in the postnatal brain. J. Neurosci. 33, 12171-12185 (2013).
check_url/kr/50905?article_type=t

Play Video

Cite This Article
Sonego, M., Zhou, Y., Oudin, M. J., Doherty, P., Lalli, G. In vivo Postnatal Electroporation and Time-lapse Imaging of Neuroblast Migration in Mouse Acute Brain Slices. J. Vis. Exp. (81), e50905, doi:10.3791/50905 (2013).

View Video