Summary

该ChroP方法结合芯片和质谱剖析染色质的基因座特异性蛋白质组学风景

Published: April 11, 2014
doi:

Summary

通过结合本地和交联染色质免疫沉淀高分辨率质谱,ChroP方法使解剖的组蛋白修饰,变体和非histonic协同作用的蛋白质在功能上不同的染色质域的复合蛋白质结构。

Abstract

染色质是一种高动态核蛋白复合物由DNA和蛋白质,其控制各个DNA依赖性过程。在特定区域的染色质结构和功能是由组蛋白的翻译后修饰(hPTMs)和变体,染色质结合蛋白,包括转录因子,和DNA甲基化的局部富集调节。染色组合物中的不同的功能区的蛋白质组分析的方法已经被缺乏有效的协议,以丰富这些域在适当的纯度和量为后续的深入分析物的质谱(MS)到目前为止妨碍。我们在这里介绍了新设计的染色质蛋白组学策略,命名ChroP(CHRO晨报P roteomics),由此制备型染色质免疫沉淀是用来隔离不同的染色质区域,其特征在hPTMs方面,变体和共同相关联的非histonic蛋白质,是通过MS进行分析。我们说明他重新ChroP的转录沉默的异染色质区域的富集和分析,其标志是三甲基化的组蛋白H3赖氨酸9的存在成立。所取得的结果证明ChroP在彻底表征异蛋白质组,并证明它作为理解如何染色质的独特的蛋白质决定簇相互作用和协同效应,建立基因座的特定结构和功能结构的有力的分析策略的潜力。

Introduction

染色质是涉及为所有的DNA介导的过程主模板一个高度动态的核蛋白复合物。核小体是染色质的基本重复单元和由含各规范组蛋白H2A,H2B,H3和H4,在其周围147 bp的DNA被包裹1,2两分子的蛋白质八聚体核心的。所有核心组蛋白的结构为球状结构域和一个灵活的N端“尾巴”突出了核小体之外。一种用于调节染色质结构和动力学的主要机制是基于共价键的翻译后修饰(翻译后修饰),其主要发生在N-末端组蛋白3,4。组蛋白修饰可以通过改变高阶染色质结构,通过改变之间的组蛋白-DNA或核小体之间的接触,并从而控制DNA结合蛋白( 机制)的可访问功能,或通过作为dockin克位点的调节蛋白,无论是作为单个单元,或者嵌入在多聚体复合物。这样调节蛋白可以发挥它们的功能以不同的方式:通过直接调节基因表达( TAF蛋白),或通过改变核小体定位( 染色质重塑复合物),或者通过修改其他组蛋白残基( 蛋白质具有甲基转移或乙酰基转移酶活性)( 反式机制)5。观察到在某些具体的染色质基因座不同的PTM模式群集导致了阐述这一假设在不同地点的不同修饰可协同作用以生成分子编码介导相关的DNA的功能状态。在“组蛋白密码假说”已经获得了很大的共识在多年,但它的实验验证已受困于技术限制6,7。

质谱(MS)为基础的蛋白质组学已成为一个功能强大的工具来映射组蛋白修饰模式和表征染色质结合蛋白8。 MS检测的变形作为肽的实验和理论质量之间的特定Δmass。在个人组蛋白的水平,微软提供了一个公正和全面的方法来映射翻译后修饰,允许其中9-14新的修改和揭示interplays的检测。

在最近几年,已经开发了多种策略来剖析染色质的蛋白质组合物,包括完整的有丝分裂染色体15,可溶性HPTM结合蛋白16-18的标识和特定染色质区域的分离和分析的表征( 端粒)19,20。然而,组蛋白翻译后修饰,变体和染色质相关蛋白之间的位点特异性的协同作用的研究仍然是不完整。在这里,我们描述了一种新的方法,命名为ChroP(染色体晨报P roteomics)21,我们已经开发了能够有效表征功能不同的染色质域。这种方法适应染色质免疫沉淀技术(ChIP),在表观遗传学研究中使用一套行之有效的方案,为充实样品的有效质谱为基础的蛋白质组学分析。我们已经开发出两种不同的协议,这取决于所用的输入和由MS处理的问题染色质的类型;具体为:1)芯片消化MNase不固定本地染色质是用来净化单核和解剖合作关联hPTMs(N-ChroP); 2)交联染色质碎片通过超声处理芯片采用的是与SILAC为主interactomics策略来描述所有共同丰富的染色质结合蛋白(X-ChroP)的组合。我们举例说明这里的N-和X-ChroP的丰富和研究异,采用H3K9me3为诱饵进行免疫沉淀步骤的结合。使用ChroP的可扩展研究无论是不同的区域染色质上,或变化过渡到一个不同的功能状态,在同一区域内的染色质组成,从而铺平了道路表观遗传学中的各种应用。

Protocol

1,细胞培养 标准介质本土芯片 生长在补充有10%胎牛血清(FBS),1%谷氨酰胺,1%青霉素/链霉素和10mM HEPES pH为7.5的Dulbecco改进的Eagle培养基(DMEM)的HeLa细胞。 交联沉淀SILAC标记 生长的HeLa细胞中SILAC DMEM培养基中,贫化赖氨酸和精氨酸的,补充有10%透析过的FBS,1%谷氨酰胺,1%青霉素/链霉素,10mM的HEPES pH为7.5和任一的光L-赖氨酸(…

Representative Results

染色质免疫沉淀法是用于分析沿基因组中的蛋白或组蛋白修饰的定位一个强大的技术。在蛋白质组学当量,芯片随后基于MS的蛋白质组学识别定性和定量的hPTMs,组蛋白变体与染色质结合蛋白是与感兴趣的修饰或蛋白免疫沉淀一起,作为“诱饵”。在N-ChroP方法中,在图1A中,原生芯片,其中染色质消化MNase( 图1B)所述,作为输入到从散装染色质独特的功能域净化。消化染…

Discussion

我们最近已描述ChroP,定量策略染色质中的蛋白质组分的大规模表征。 ChroP结合的表观遗传领域使用两种互补的方法,芯片和质谱,从自己的优势中获利,克服各自的局限性。沉淀耦合到深度测序技术(ChIP-SEQ)允许的组蛋白修饰在核小体少35的分辨率的全基因组的映射。虽然便于其敏感性,基于抗体的测定是在自己有能力区分类似的修改和解剖的组蛋白密码36组合方面的限制。另?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究最初发表在分子细胞蛋白质组学。索尔多米和染色质功能域Bonaldi T的蛋白质组学研究揭示新型增效作用之间鲜明的异染色质成分的MCP。 2013; 12:64-80。 ©美国社会生物化学与分子生物学。我们感谢罗伯塔Noberini(技术和IEO的意大利学院,意大利)的手稿的批判性阅读。结核病工作是由来自乔瓦尼Armenise哈佛基金会职业发展计划,意大利癌症研究协会和健康的意大利外交部资助。 MS工作是由一个FIRC奖学金支持。

Materials

DMEM  Lonza BE12-614F
FBS Invitrogen 10270-106
SILAC DMEM M-Medical FA30E15086
Dialyzed FBS Invitrogen 26400-044
Lysine 0 (12C6 14N2 L-lysine) Sigma Aldrich L8662
Arginine 0 (12C6 14N4 L-arginine) Sigma Aldrich A6969
Lysine 8 (13C6 15N2 L-lysine) Sigma Aldrich 68041
Arginine 10 (13C6 15N4 L-arginine) Sigma Aldrich 608033
Micrococcal Nuclease Roche 10 107 921 001
Complete, EDTA-free Protease Inhibitor Cocktail Tablets Roche 04 693 132 001
Spectra/Por 3 dialysis tubing, 3.5K MWCO, 18mm flat width, 50 foot length Spectrumlabs 132720
QIAquick PCR purification kit QIAGEN 28104
Anti-Histone H3 tri-methylated K9-ChIP grade Abcam ab8898
Histone H3 peptide tri-methyl K9  Abcam ab1773
Dynabeads Protein G Invitrogen 100.04D
NuPAGE Novex 4-12%                            Bis-Tris Gel  Invitrogen  NP0335BOX
Colloidal Blue Staining Kit Invitrogen  LC6025
LDS Sample Buffer Invitrogen  NP0007
Formaldheyde Sigma Aldrich F8775
Aceti anhydride-d6 Sigma Aldrich 175641-1G
Formic Acid Sigma Aldrich 94318-50ML-F
Iodoacetamide ≥99% (HPLC), crystalline Sigma Aldrich I6125
DL-Dithiothreitol Sigma Aldrich 43815
Sequencing Grade Modified Trypsin, Frozen 100ug (5 × 20μg) Promega V5113
Nanospray OD 360μm x ID 75μm, tips ID 8μm uncoated Pk 5 Microcolumn Srl FS360-75-8-N-5-C15
  ReproSil-Pur 120 C18-AQ, 3 µm   15 % C Dr. Maisch GmbH r13.aq.
C18 extraction disk, 47 mm Agilent Technologies 1​2​1​4​5​0​0​4
Carbon extraction disk, 47 mm Agilent Technologies 12145040
Cation extraction disk Agilent Technologies 66889-U

References

  1. Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science. 184, 868-871 (1974).
  2. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 389, 251-260 (1997).
  3. Kouzarides, T. Chromatin modifications and their function. Cell. 128, 693-705 (2007).
  4. Bannister, A. J., Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381-395 (2011).
  5. Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D., Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol. 14, 1025-1040 (2007).
  6. Jenuwein, T., Allis, C. D. Translating the histone code. Science. 293, 1074-1080 (2001).
  7. Spotswood, H. T., Turner, B. M. An increasingly complex code. J Clin Invest. 110, 577-582 (2002).
  8. Soldi, M., Cuomo, A., Bremang, M., Bonaldi, T. Mass spectrometry-based proteomics for the analysis of chromatin structure and dynamics. Int J Mol Sci. 14, 5402-5431 (2013).
  9. Sidoli, S., Cheng, L., Jensen, O. N. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry. J Proteomics. 75, 3419-3433 (2012).
  10. Britton, L. M., Gonzales-Cope, M., Zee, B. M., Garcia, B. A. Breaking the histone code with quantitative mass spectrometry. Expert Rev Proteomics. 8, 631-643 (2011).
  11. Taverna, S. D., et al. Long-distance combinatorial linkage between methylation and acetylation on histone H3 N termini. Proc Natl Acad Sci U S A. 104, 2086-2091 (2007).
  12. Garcia, B. A., Shabanowitz, J., Hunt, D. F. Characterization of histones and their post-translational modifications by mass spectrometry. Curr Opin Chem Biol. 11, 66-73 (2007).
  13. Villar-Garea, A., Imhof, A. The analysis of histone modifications. Biochim Biophys Acta. 1764, 1932-1939 (2006).
  14. Plazas-Mayorca, M. D., et al. One-pot shotgun quantitative mass spectrometry characterization of histones. J Proteome Res. 8, 5367-5374 (2009).
  15. Ohta, S., et al. The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell. 142, 810-821 (2010).
  16. Vermeulen, M., et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell. 131, 58-69 (2007).
  17. Vermeulen, M., et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell. 142, 967-980 (2010).
  18. Bartke, T., et al. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell. 143, 470-484 (2010).
  19. Dejardin, J., Kingston, R. E. Purification of proteins associated with specific genomic Loci. Cell. 136, 175-186 (2009).
  20. Lambert, J. P., Mitchell, L., Rudner, A., Baetz, K., Figeys, D. A novel proteomics approach for the discovery of chromatin-associated protein networks. Mol Cell Proteomics. 8, 870-882 (2009).
  21. Soldi, M., Bonaldi, T. The proteomic investigation of chromatin functional domains reveals novel synergisms among distinct heterochromatin components. Mol Cell Proteomics. 12, 764-780 (2013).
  22. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 1, 2856-2860 (2006).
  23. Shevchenko, A., Wilm, M., Vorm, O., Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 68, 850-858 (1996).
  24. Bonaldi, T., Regula, J. T., Imhof, A. The use of mass spectrometry for the analysis of histone modifications. Methods Enzymol. 377, 111-130 (2004).
  25. Cuomo, A., Moretti, S., Minucci, S., Bonaldi, T. SILAC-based proteomic analysis to dissect the "histone modification signature" of human breast cancer cells. Amino Acids. 41, 387-399 (2011).
  26. Rappsilber, J., Mann, M., Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2, 1896-1906 (2007).
  27. Rappsilber, J., Ishihama, Y., Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem. 75, 663-670 (2003).
  28. Olsen, J. V., Ong, S. E., Mann, M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics. 3, 608-614 (2004).
  29. Jung, H. R., Pasini, D., Helin, K., Jensen, O. N. Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36. Mol Cell Proteomics. 9, 838-850 (2010).
  30. Cox, J., Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 26, 1367-1372 (2008).
  31. Cox, J., et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 10, 1794-1805 (2011).
  32. Lachner, M., O’Carroll, D., Rea, S., Mechtler, K., Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 410, 116-120 (2001).
  33. Bannister, A. J., et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 410, 120-124 (2001).
  34. Ram, O., et al. Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell. 147, 1628-1639 (2011).
  35. Barski, A., et al. High-resolution profiling of histone methylations in the human genome. Cell. 129, 823-837 (2007).
  36. Beck, H. C. Mass spectrometry in epigenetic research. Methods Mol Biol. 593, 263-282 (2010).
  37. Ernst, J., Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol. 28, 817-825 (2010).
  38. Tipton, J. D., et al. Analysis of intact protein isoforms by mass spectrometry. J Biol Chem. 286, 25451-25458 (2011).
  39. Young, N. L., et al. High throughput characterization of combinatorial histone codes. Mol Cell Proteomics. 8, 2266-2284 (2009).
  40. Boyne, M. T., Pesavento, J. J., Mizzen, C. A., Kelleher, N. L. Precise characterization of human histones in the H2A gene family by top down mass spectrometry. J Proteome Res. 5, 248-253 (2006).
check_url/kr/51220?article_type=t

Play Video

Cite This Article
Soldi, M., Bonaldi, T. The ChroP Approach Combines ChIP and Mass Spectrometry to Dissect Locus-specific Proteomic Landscapes of Chromatin. J. Vis. Exp. (86), e51220, doi:10.3791/51220 (2014).

View Video