Summary

结合单分子操纵和成像蛋白-DNA相互作用的研究

Published: August 27, 2014
doi:

Summary

在这里,我们描述了仪器和方法,用于检测单荧光标记的蛋白质分子与悬浮两层光学俘获微球之间的单个DNA分子的相互作用。

Abstract

The paper describes the combination of optical tweezers and single molecule fluorescence detection for the study of protein-DNA interaction. The method offers the opportunity of investigating interactions occurring in solution (thus avoiding problems due to closeby surfaces as in other single molecule methods), controlling the DNA extension and tracking interaction dynamics as a function of both mechanical parameters and DNA sequence. The methods for establishing successful optical trapping and nanometer localization of single molecules are illustrated. We illustrate the experimental conditions allowing the study of interaction of lactose repressor (lacI), labeled with Atto532, with a DNA molecule containing specific target sequences (operators) for LacI binding. The method allows the observation of specific interactions at the operators, as well as one-dimensional diffusion of the protein during the process of target search. The method is broadly applicable to the study of protein-DNA interactions but also to molecular motors, where control of the tension applied to the partner track polymer (for example actin or microtubules) is desirable.

Introduction

单分子(SM)的技术有了很大的发展,在过去三十年来克服一些传统的,本体溶液测量1-3的限制,需要作出回应。单一生物分子的操纵创造了机会,以测量生物聚合物4的机械性能和控制的蛋白-蛋白5和蛋白质-DNA相互作用6,7的机械参数。 SM荧光检测,另一方面,代表一个非常灵活的工具用于研究蛋白质的活性在体外体内 ,导致定位和跟踪单分子与纳米精度的可能性。通过仪器的点扩散函数与SM图像的拟合,实际上,可以实现定位与精度主要取决于信号噪声比(SNR)和达到约一纳米8,9的限制。这些方法找到强大应用在马达蛋白的动力学的研究,以及对底层中的DNA结合蛋白的目标搜索的扩散过程。确定扩散常数为DNA序列上的目标函数,停留时间和精确地测量在一维扩散事件探索了DNA的长度的能力,代表一个功能强大的工具,蛋白质-DNA相互作用动力学的研究和调查的特定目标的搜索机制。

最近,这两种技术的结合,产生了新一代实验装置10-14实现同时操控的生物基质(如肌动蛋白丝或DNA分子)的相互作用伙伴酶检测/定位(例如肌凝蛋白或DNA结合蛋白)。这些技术的优点主要停留在施加机械控制被困聚合物的可能性,从而ENA金光闪闪的相互作用动力学与力或力矩的研究。此外,该方法允许从表面为止测量的生化反应,避免了经典的SM的方法, 即,需要对所研究的分子固定在表面上(玻璃载玻片或微球体)的主要限制之一。

两个单分子技术的结合需要克服几个技术难题,所产生的主要是从机械稳定性和足够的信噪比(SNR)(特别是当需要定位以纳米精度)15的要求。特别地,耦合SM荧光检测用光学镊子,噪声的降低时,并从捕获红外激光器16和生化缓冲液的生物复合物的装配和实验测量11的性能的控制漂白是最重要的。在这里,我们描述了方法,用于执行成功测量双套色/ SM荧光定位设置。该方法被示出与含有特定了LacI结合序列( 例如,运营商)乳糖阻遏蛋白(了LacI)的荧光标记(用Atto532)和检测到的,因为它结合到DNA分子(两个光学镊子之间的残留)的例子。我们证明在检测了LacI的DNA和扩散约束力沿其在目标搜索过程中轮廓的方法的有效性。该方法适用于DNA序列和DNA结合蛋白中的任意组合,以及与其他系统(微管或肌动蛋白丝和马达蛋白与它们进行交互)。

Protocol

1,光镊设置与纳米稳定性实验装置必须提供两个光镊在低于1%的捕集激光器的纳米级和强度波动指向稳定性。这些条件结合,将确保在典型的拉哑铃纳米稳定性(1 PN -几十PN的),陷阱刚度(0.1 PN /纳米)和测量带宽(图像采集速度为20秒-1)。该实验装置的方案, 如图1所示。 光镊设计和施工15,17: 安装与激活隔离器的光学平台,?…

Representative Results

在一个成功的实验中,一个(或多个)标记的蛋白质经受装订沿着DNA分子( 图3A)/解除绑定和/或单维扩散。沿所述DNA分子的蛋白质的定位允许的动力学参数的量化的DNA序列的功能。当缓冲液条件引起的一维扩散被施加,所以能够追随蛋白的轨迹,并确定,例如,扩散系数D 1D。 单点的精确位置,在每一帧,可通过用二维高斯函数拟合的点扩散函数(PSF)?…

Discussion

在过去的十年中,单分子操纵和成像技术已经看到在空间和时间分辨率方面很大的进步。的操纵和成像技术的组合是在的强大工具的基础,现在允许一个单一的生物聚合物的机械条件,如DNA,RNA或细胞骨架细丝的控制,和单一的蛋白质同时定位与同一聚合物相互作用。控制困聚合物的机械条件是特别感兴趣的。事实上,在活细胞中,核酸被连续经历引起相互作用的酶和蛋白质的机械应力;同样的,…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢Gijs Wuite,欧文JG彼得曼,彼得总的帮助,微流体和阿莱西娅Tempestini的帮助,样品制备。这项研究是根据资助协议资金由欧盟第七框架计划(FP7 / 2007-2013)N°284464和意大利外交部,教育,大学和研究外国投资审查委员会2011 RBAP11X42L006,清新汽油在Ricerca 2013 RBFR13V4M2,并在框架该旗舰项目NANOMAX。

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description Web Address
elastomeric isolators Newport Newdamp Choose the appropriate Newdamp elastomer depending on the microscope weight and resonance frequencies http://www.newport.com
optical isolator Optics for Research IO-3-YAG-VHP http://www.ofr.com
Nd:YAG laser, 1064 nm wavelength Spectra-Physics Millennia IR http://www.newport.com/
acousto-optic deflectors (AODs) A&A optoelectronic DTS-XY 250 http://www.aaoptoelectronic.com/
Direct Digital Synthesizers Analog Devices http://www.analog.com/
quadrant detector photodiodes OSI optoelectronics SPOT-15-YAG http://www.osioptoelectronics.com
DIO and FPGA board National Instruments NI-PCI-7830R http://www.ni.com
Halogen lamp Schott KL 1500 LCD http://www.schott.com
Condenser Olympus U-AAC 1.4NA Aplanat Apchromat http://www.olympus-global.com/en/
Objective Nikon CFI Plan Apochromat 60x 1.2NA water immersion http://www.nikoninstruments.com
532 nm laser Coherent Sapphire http://www.coherent.com
CCD 200X and 2000X Hamamatsu  XC-ST70 CE http://www.hamamatsu.com
electron-multiplied CCD Hamamatsu  C9100-13 http://www.hamamatsu.com/
piezo stage with nm-accuracy Physik Instrumente P-527.2CL  http://www.physikinstrumente.com/
Emission Filter Chroma Technologies 600/100m http://www.chroma.com
silica beads (1.54 mm) Bangs Laboratories SS04N/5303 http://www.bangslabs.com/
Albumin from bovine serum (BSA) Sigma Aldrich B4287 http://www.sigmaaldrich.com/
pentyl acetate  Sigma Aldrich 46022 Flammable liquid and vapour (No 1272/2008) http://www.sigmaaldrich.com/
nitrocellulose Sigma Aldrich N8267-5EA Flammable solid  (No 1272/2008) http://www.sigmaaldrich.com/
heat block MPM Instruments Srl M502-HBD with 2 removable blocks; preheated at 120° C http://www.mpminstruments.com
NanoPort assemblies Upchurch Scientific Inc. N-333 http://www.upchurch.com/
polyetheretherketone tubing  Upchurch Scientific Inc. 1535 http://www.upchurch.com/
home-made metallic holder for the assembly of the flow-chamber pressure reservoir made of Plexiglass
luer lock-tip syringes 2.5 mL Terumo SS 02LZ1 http://www.terumomedical.com
shut-off valves  Upchurch Scientific, Inc. P-732 http://www.upchurch.com/
flangeless fittings  Upchurch Scientific, Inc. LT-111 http://www.upchurch.com/
fluorinated ethylene propylene tubing  Upchurch Scientific, Inc. 1549 http://www.upchurch.com/
two computer-controlled solenoid valves Clippard, Cincinnati, USA ET-2-H-M5 http://www.clippard.com
pressure transducer Druck LTD PTX 1400
biotin-14-dCTP  Life Technologies 19518-018 http://www.lifetechnologies.com/
Terminal deoxynucleotidyl Transferase (TdT) Thermoscientific EP0161 http://www.thermoscientificbio.com/
ATTO532 maleimide Sigma Aldrich 68499 http://www.sigmaaldrich.com/
N,N-dimethylformamide (DMF)  Sigma Aldrich 227056 Combustible Liquid, Harmful by skin absorption., Irritant, Teratogen. H226; H303; H312; H316; H319; H331; H360; P201; P261; P280;P305; P351; P338; P311 http://www.sigmaaldrich.com/
Tris-(2-carboxyethyl)phosphine hydrochloride (TCEP)  Sigma Aldrich C4706 http://www.sigmaaldrich.com/
L-Glutathione reduced (GSH) Sigma Aldrich G4251 Acute toxicity, Oral (Category 5), H303 http://www.sigmaaldrich.com/
Amicon Ultra-15, PLQK Ultracel-PL Membrane, 10 kDa cutoff spin concentrators Merck Millipore UFC901024 http://www.merckmillipore.it/
streptavidin-coated polystyrene beads 1,87 µm Spherotech, Inc. SVP-15-5 http://www.spherotech.com/

References

  1. Monico, C., Capitanio, M., Belcastro, G., Vanzi, F., Pavone, F. S. Optical Methods to Study Protein-DNA Interactions in Vitro and in Living Cells at the Single-Molecule Level. International journal of molecular sciences. 14, 3961-3992 (2013).
  2. Tinoco, I., Gonzalez, R. L. Biological mechanisms, one molecule at a time. Genes & development. 25, 1205-1231 (2011).
  3. Capitanio, M., et al. Exploring molecular motors and switches at the single-molecule level. Micr. Res. Tech. 65, 194-204 (2004).
  4. Smith, S. B., Finzi, L., Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science. 258, 1122-1126 (1992).
  5. Block, S. M., Goldstein, L. S., Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature. 348, 348-352 (1990).
  6. Wang, M. D., et al. Force and velocity measured for single molecules of RNA polymerase. Science. 282, 902-907 (1998).
  7. Capitanio, M., et al. Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke. Nat Methods. 9, 1013-1019 (2012).
  8. Thompson, R. E., Larson, D. R., Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys J. 82, 2775-2783 (2002).
  9. Yildiz, A., et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science. 300, 2061-2065 (2003).
  10. Biebricher, A., Wende, W., Escude, C., Pingoud, A., Desbiolles, P. Tracking of single quantum dot labeled EcoRV sliding along DNA manipulated by double optical tweezers. Biophys J. 96, 50-52 (2009).
  11. Candelli, A., Wuite, G. J., Peterman, E. J. Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions. Physical chemistry chemical physics : PCCP. 13, 7263-7272 (2011).
  12. Capitanio, M., Cicchi, R., Pavone, F. S. Continuous and time-shared multiple optical tweezers for the study of single motor proteins. Optics and Lasers in Engineering. 45, 450-457 (2007).
  13. Harada, Y., et al. Single-molecule imaging of RNA polymerase-DNA interactions in real time. Biophys J. 76, 709-715 (1999).
  14. van Mameren, J., et al. Counting RAD51 proteins disassembling from nucleoprotein filaments under tension. Nature. 457, 745-748 (2009).
  15. Capitanio, M., Maggi, D., Vanzi, F., Pavone, F. Fiona in the trap: the advantages of combining optical tweezers and fluorescence. J Opt A: Pure Appl Opt. 9, s157 (2007).
  16. Dijk, M. A., Kapitein, L. C., Mameren, J., Schmidt, C. F., Peterman, E. J. Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. J Phys Chem B. 108, 6479-6484 (2004).
  17. Capitanio, M., Cicchi, R., Pavone, F. S. Position control and optical manipulation for nanotechnology applications. European Physical Journal B. 46, 1-8 (2005).
  18. Capitanio, M., et al. Calibration of optical tweezers with differential interference contrast signals. Review of Scientific Instruments. 73, 1687-1696 (2002).
  19. Elangovan, R., et al. An integrated in vitro and in situ study of kinetics of myosin II from frog skeletal muscle. J Physiol. 590, 1227-1242 (2012).
  20. Wuite, G. J. L., Davenport, R. J., Rappaport, A., Bustamante, C. An integrated laser trap/flow control video microscope for the study of single biomolecules. Biophysical Journal. 79, 1155-1167 (2000).
  21. Brewer, L. R., Bianco, P. R. Laminar flow cells for single-molecule studies of DNA-protein interactions. Nat Methods. 5, 517-525 (2008).
  22. Rutkauskas, D., Zhan, H. L., Matthews, K. S., Pavone, F. S., Vanzi, F. Tetramer opening in LacI-mediated DNA looping. Proceedings of the National Academy of Sciences of the United States of America. 106, 16627-16632 (2009).
  23. Marko, J. F., Siggia, E. D. Stretching DNA. Macromolecules. 28, 8759-8770 (1995).
  24. van Mameren, J., et al. Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging. Proc Natl Acad Sci U S A. 106, 18231-18236 (2009).
  25. Wang, M. D., Yin, H., Landick, R., Gelles, J., Block, S. M. Stretching DNA with optical tweezers. Biophys J. 72, 1335-1346 (1997).
  26. Ma, H., Long, F., Zeng, S., Huang, Z. L. Fast and precise algorithm based on maximum radial symmetry for single molecule localization. Opt Lett. 37, 2481-2483 (2012).
  27. Parthasarathy, R. Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat Methods. 9, 724-726 (2012).

Play Video

Cite This Article
Monico, C., Belcastro, G., Vanzi, F., Pavone, F. S., Capitanio, M. Combining Single-molecule Manipulation and Imaging for the Study of Protein-DNA Interactions. J. Vis. Exp. (90), e51446, doi:10.3791/51446 (2014).

View Video