Summary

密闭静态和流动胶体聚合物混合物的共聚焦成像

Published: May 20, 2014
doi:

Summary

共聚焦显微术用于图像的静态和流动的胶体聚合物的混合物,这是研究作为模型系统的吸引力悬浮液。图像分析算法来计算结构和动态度量用于测量由于几何约束变化的胶体粒子。

Abstract

密闭胶体悬浮有吸引力间相互作用的行为是合理设计的材料的定向组件1-3,给药4,改进的烃采收5-7,和对能量存储装置8流动的电极是至关重要的。含有荧光性胶体和非吸附性的聚合物悬浮液吸引人的模型系统中,如回转聚合物半径分别向范围和颗粒间的吸引力的强度,粒子半径控制聚合物的浓度和比例。通过调节聚合物的性质和胶体的体积分数,胶体液,簇的液体,凝胶,晶体,和眼镜可以得到9。 共聚焦显微镜,荧光显微镜的一个变型中,允许一个光学透明和荧光样品将被成像以高空间和在三维空间中的时间分辨率。在该技术中,一个小针孔或由属于显微镜的光学系统的焦点容积之外的样品区域狭缝块所发出的荧光。其结果是,样品在焦平面只有一个薄截面进行成像。此技术特别适合于单粒子尺度来探测在稠密的胶体悬浮液的结构和动力学:颗粒是足够大,以利用可见光来解决和扩散足够缓慢以商业共聚焦系统10的典型的扫描速度被捕获。在扫描速度和分析算法的改进也使流动的悬浮液 11-16,37 定量共聚焦成像。在本文中,我们演示了激光共聚焦显微镜实验来探测局限相行为和胶体聚合物混合物的流动性能。我们先准备科尔是密度和折射率的OID的聚合物的混合物相匹配。接下来,我们提出一个标准协议,用于在不同的约束薄楔形细胞成像静态密集的胶体聚合物的混合物。最后,我们展示了一个协议,用于微流在成像胶体聚合物的混合物。

Introduction

本文演示了静态和流动的密闭胶体聚合物中二和混合三个维度及(b)粒子跟踪和相关的合成图像的分析,以获得对相态和流动性的定量信息(一)共焦成像。

胶体悬浮液有吸引力的粒子间的相互作用似乎无处不在的技术应用,材料的定向组装1-3,给药4,提高油气采收率5-7,和储能8。这些应用的一个共同特点是,粒子必须通过精细的几何形状,如喷嘴,打印头,微通道,或者多孔介质中流动,和/或成型为薄膜或棒。用于探测在密闭的几何形状,包括电子显微镜17,18,X射线显微镜,19,和激光衍射米微米大小的胶体结构的技术镜检20,可用于测量在微尺度粒子的结构和动力学。这些技术,然而,不允许访问的单个颗粒,从该结构和动态度量可以计算为直接比较数值模拟21,22的轨迹。

共聚焦显微镜的荧光显微镜的一个变种,它使的荧光样品的薄切片成像。对于胶体科学10,此技术是用于深内稠密的悬浮液或在三维成像中特别有用。粒子跟踪算法23适用于二维或三维的时间序列共聚焦显微照片产生所有可见的粒子的运动轨迹。其结果是,激光共聚焦显微镜和粒子跟踪的组合已被用于研究的相行为,结构和胶态悬浮液的动力学,包括有序的晶体24-27和紊乱海关眼镜28-3132-35的凝胶。

其他图像分析算法可以应用于从时间序列的共聚焦显微照片测量粒子动力学。例如,扩散粒子动力学可以通过分析利用共聚焦微分动力显微镜36的强度随时间的波动进行研究。当粒子的位移比颗粒间间距大,根据粒子图像测速38-40图像相关性37可以应用到测量颗粒的速度分布。的跟踪和相关算法相结合,使胶体动力学在经历缓慢和快速流动11-16,41-45系统进行测量。

我们用胶体聚合物混合物作为有吸引力的胶体悬浮液9款车型。在这些混合物中,颗粒间的吸引力电位的范围和强度是通过比率控制回转半径聚合物与颗粒半径与聚合物和静电斥力的浓度通过添加一价有机盐46进行控制。因为颗粒间的相互作用,可以仔细调整,这些混合物的凝固进行了广泛研究以共焦显微镜34,47-51。

在这里,我们展示了共焦成像的静止和流动的胶体聚合物混合物和图像分析37,其中胶体体积分数为Φ保持固定= 0.15,即探头禁闭的相行为和这些混合物的流动性能的影响。这些技术广泛适用于颗粒系统,是折射率匹配的,并且其中的颗粒和/或溶剂可以标记有荧光染料。

Protocol

的胶体聚合物的混合物1。准备注意:该协议使用的聚(甲基丙烯酸甲酯)(PMMA)粒子,空间稳定使用聚(12 – 羟基硬脂酸)和标记有荧光染料(如尼罗红,若丹明B,或荧光素),合成了以下的标准即配方52。 准备3:1 w / w的环己基溴化铵(CXB​​)和十氢萘(DHN)作为股票溶剂的混合物。此混合物几乎与折射颗粒的密度和索引。添加的有机盐,四丁基氯化铵<su…

Representative Results

为了证明共聚焦成像和粒子跟踪,我们调查坐月子对胶体聚合物混合物63-65相行为的影响。这些实验的胶体粒径为2 = 0.865微米。胶体体积分数固定为Φ= 0.15和聚合物 c p的浓度变化为0至23.6毫克/毫升。代表性的共聚焦图像显示在图2中 63,左边的列。使用跟踪算法得到的颗粒归仓,我们计算出的代表结构和动态指标,包括对相关函数( ?…

Discussion

胶态悬浮液被广泛地研究了作为密闭相行为模型,由于微米级的胶体颗粒具有比原子和分子显著缓慢的动态特性,因此可以容易地成像并随时间跟踪10。对于这些基础研究,了解粒子间的景点上局限于相行为的影响提供了机会,探索,如毛细管冷凝和蒸发21,22,67现象。此外,密闭吸引力的悬浮液出现无处不在工业和技术的应用。对于这些应用的研究,了解悬浮液制剂的有关密闭流?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

研究报告本出版物中被休斯敦大学新学院格兰特,从德州超导中心的种子批,并在美国化学学会石油研究基金(52537-DNI)的支持。

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Cyclohexyl bromide Sigma Aldrich 135194 CAS Number  108-85-0, Molecular wt. =163.06, Used in stock solvent
Decahydronapthalene Sigma Aldrich D251 CAS Number 91-17-8, Molecular wt. = 138.25, Used in stock solvent
Nile Red Sigma Aldrich 72485 Fluorescent dye
Fluorescein 5(6)-isothiocyanate Sigma Aldrich F3651 Fluorescent dye
Rhodamine B Sigma Aldrich 83689 Fluorescent dye
Dynamic Light Scattering  Brookhaven Instruments BI-APD DLS equipment used for particle size measurement
Polystyrene  Varian/Agilent PL20138-23 Polystyrene (polymer) for inducing depletion attraction
tetrabutyl(ammonium chloride) (TBAC) Sigma Aldrich 86870 monovalent salt
Cover slips Fisher Scientific 12-518-210  48⨉65 mm
Cover slips Fisher Scientific 12-540B 22⨉22 mm
UV Adhesive Norland Adhesive NOA 68T Part Number 68T01 (UV cured adhesive)
VT Eye Visitech VT Eye confocal scanner
VT Infinity Visitech VT Infinity confocal scanner
Microscope  Leica DMI3000B Inverted Microscope
Centrifuge Thermo Scientific  Sorvall ST 16 1-5000 rpm
Glass slides VWR 48382-171 25⨉75 mm, 1.0 mm thick
microcapillary Vitrocom 8510-100 0.1⨉0.1 mm square cross section, 100 mm length
Teflon tubing smallparts SLTT 26-72 Zeus PTFE Sublite Wall Tubing 26 AWG .016" ID x .0030" Wall
Epoxy Devcon DA051 5 minute epoxy
Syringe Micromate/Cadence 5004 glass syringe with metal luer lock tip
Syringe tips  Nordson 7018462 32 GA precision tips 
Syringe pump  New Era Pump system Inc.  NE1002X Programmable microfluidic pump (syringepump.com)
Weigh balance Mettler Toledo AB204-S 0.0001-220 g
PMMA particles synthesized poly(methylmethacrylate) colloidal particles

References

  1. Shereda, L. T., Larson, R. G., Solomon, M. J. Local stress control of spatiotemporal ordering of colloidal crystals in complex flows. Physical Review Letters. 101, 038301-0310 (2008).
  2. Conrad, J. C., et al. Designing colloidal suspensions for directed materials assembly. Current Opinion in Colloid and Interface Science. 16, 71-79 (2011).
  3. Lewis, J. A. Direct ink writing of 3D functional materials. Advanced Functional Materials. 16, 2193-2204 (2006).
  4. Mishra, B., Patel, B. B., Tiwari, S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine. 6, 9-24 (2010).
  5. Maitland, G. C. Oil and gas production. Curr. Opin. Colloid Interface Sci. 5, 301-311 (2000).
  6. Kelessidis, V., Maglione, R., Tsamantaki, C., Aspirtakis, Y. Optimal determination of rheological parameters for Herschel–Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling. J. Petrol. Sci. Eng. 53, 203-224 (2006).
  7. Ponnapati, R., et al. Polymer-functionalized nanoparticles for improving waterflood sweep efficiency: Characterization and transport properties. Industrial and Engineering Chemistry Research. 50, 13030-13036 (2011).
  8. Duduta, M., et al. Semi-solid lithium rechargeable flow battery. Advanced Energy Materials. 1, 511-516 (2011).
  9. Poon, W. C. K. The physics of a model colloid-polymer mixture. Journal of Physics: Condensed Matter. 14, (2002).
  10. Prasad, V., Semwogerere, D., Weeks, E. R. Confocal microscopy of colloids. Journal of Physics: Condensed Matter. 19, 113102-1110 (2007).
  11. Kogan, M., Solomon, M. J. Electric-field-induced yielding of colloidal gels in microfluidic capillaries. Langmuir. 26, 1207-1213 (2010).
  12. Frank, M., Anderson, D., Weeks, E. R., Morris, J. F. Particle migration in pressure-driven flow of a Brownian suspension. Journal of Fluid Mechanics. 493, 363-378 (2003).
  13. Isa, L., Besseling, R., Morozov, A. N., Poon, W. C. K. Velocity oscillations in microfluidic flows of concentrated colloidal suspensions. Physical Review Letters. 102, 058302-0510 (2009).
  14. Isa, L., Besseling, R., Poon, W. C. K. Shear zones and wall slip in the capillary flow of concentrated colloidal suspensions. Physical Review Letters. 98, (2007).
  15. Semwogerere, D., Morris, J. F., Weeks, E. R. Development of particle migration in pressure-driven flow of a Brownian suspension. Journal of Fluid Mechanics. 581, 437-451 (2007).
  16. Semwogerere, D., Weeks, E. R. Shear-induced particle migration in binary colloidal suspensions. Phys. Fluids. 20, (2008).
  17. Ramiro-Manzano, F., Bonet, E., Rodriguez, I., Meseguer, F. Layering transitions in confined colloidal crystals: The hcp-like phase. Physical Review E. 76, 050401-0510 (2007).
  18. Ramiro-Manzano, F., Meseguer, F., Bonet, E., Rodriguez, I. Faceting and commensurability in crystal structures of colloidal thin films. Physical Review Letters. 97, 028304-0210 (2006).
  19. Hilhorst, J., et al. hree-dimensional structure and defects in colloidal photonic crystals revealed by tomographic scanning transmission X-ray microscopy. Langmuir. 28, 3614-3820 (2012).
  20. Luo, Y. -. Y., Hu, S. -. X., Lu, Y., Mai, Z. -. H., Li, M. Real time observation of partial dislocations in thin colloidal crystals. Applied Physics Letters. 95. 174107, (2009).
  21. Binder, K., Horbach, J., Vink, R. L. C., De Virgiliis, A. Confinement effects on phase behavior of soft matter systems. Soft Matter. 4, 1555-1568 (2008).
  22. De Virgiliis, A., Vink, R. L. C., Horbach, J., Binder, K. From capillary condensation to interface localization transitions in colloid-polymer mixtures confined in thin-film geometry. Physical Review E. 78, 041604-0410 (2008).
  23. Crocker, J. C., Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298-310 (1996).
  24. Gasser, U., Weeks, E. R., Schofield, A. B., Pusey, P. N., Weitz, D. A. Real-space imaging of nucleation and growth in colloidal crystallization. Science. 292, 258-262 (2001).
  25. Alsayed, A. M., Islam, M. F., Zhang, J., Collings, P., Yodh, A. G. Premelting at defects within bulk colloidal crystals. Science. 309, 1207-1210 (2005).
  26. Leunissen, M. E., et al. Ionic colloidal crystals of oppositely charged particles. Nature. 437, 235-240 (2005).
  27. Nagamanasa, K. H., Gokhale, S., Ganapathy, R., Sood, A. K. Confined glassy dynamics at grain boundaries in colloidal crystals. Proceedings of the National Academy of Sciences of the United States of America. 108. , 11323-11326 (2011).
  28. Kaya, D., Green, N. L., Maloney, C. E., Islam, M. F. Normal modes and density of states of disordered colloidal solids. Science. 329, 656-658 (2010).
  29. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. B., Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science. 287, 627-631 (2000).
  30. Sarangapani, P. S., Schofield, A. B., Zhu, Y. Direct experimental evidence of growing dynamic length scales in confined colloidal liquids. Phys. Rev. E. 83, 030502-0310 (2011).
  31. Sarangapani, P. S., Schofield, A. B., Zhu, Y. Relationship between cooperative motion and the confinement length scale in confined colloidal liquids. Soft Matter. 8, 814-818 (2012).
  32. Dibble, C. J., Kogan, M., Solomon, M. J. Structure and dynamics of colloidal depletion gels: Coincidence of transitions and heterogeneity. Phys. Rev. E. 74, 041403-0410 (2006).
  33. Dibble, C. J., Kogan, M., Solomon, M. J. Structural origins of dynamical heterogeneity in colloidal gels. Phys. Rev. E. 77, 050401-0510 (2008).
  34. Lu, P. J., et al. Gelation of particles with short-range attraction. Nature. 453, 499-504 (2008).
  35. Hsiao, L. C., Newman, R. S., Glotzer, S. C., Solomon, M. J. Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels. Proceedings of the National Academy of Sciences of the United States of America. 109. , 16029-16034 (2012).
  36. Lu, P. J., et al. Characterizing concentrated, multiply scattering, and actively driven fluorescent systems with confocal differential dynamic microscopy. Physical Review Letters. 108, 218103-2110 (2012).
  37. Besseling, R., Isa, L., Weeks, E. R., Poon, W. C. K. Quantitative imaging of colloidal flows. Advances In Colloid and Interface Science. 146. , 1-17 (2009).
  38. Wereley, S. T., Meinhart, C. D. Micron-resolution particle image velocimetry. Microscale Diagnostic Techniques. , 1-62 (2005).
  39. Angele, K. P., Suzuki, Y., Miwa, J., Kasagi, N. Development of a high-speed scanning micro PIV system using a rotating disc. Measurement Science and Technology. 17, 1639-1646 (2006).
  40. Klein, S. A., Posner, J. D. Improvement in two-frame correlations by confocal microscopy for temporally resolved micro particle imaging velocimetry. Measurement Science and Technology. 21, 105409-1010 (2010).
  41. Derks, D., Wu, Y. L., Van Blaaderen, A., Imhof, A. Dynamics of colloidal crystals in shear flow. Soft Matter. 5, 1060-1065 (2009).
  42. Ballesta, P., Besseling, R., Isa, L., Petekidis, G., Poon, W. C. K. Slip and flow of hard sphere colloidal glasses. Physical Review Letters. 101, 258301-2510 (2008).
  43. Rajaram, B., Mohraz, A. Microstructural response of dilute colloidal gels to nonlinear shear deformation. Soft Matter. 6, 2246-2259 (2010).
  44. Rajaram, B., Mohraz, A. Dynamics of shear-induced yielding and flow in dilute colloidal gels. Physical Review E. 84, (2011).
  45. Rajaram, B., Mohraz, A. Steady shear microstructure in dilute colloid–polymer mixtures. Soft Matter. 8, 3699-3707 (2012).
  46. Yethiraj, A., Van Blaaderen, A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature. 421, 513-517 (2003).
  47. Campbell, A. I., Anderson, V., Van Duijneveldt, J. S., Bartlett, P. Dynamical arrest in attractive colloids: The effect of long-range repulsion. Physical Review Letters. 94, 208301-2010 (2005).
  48. Klix, C. L., Royall, C. P., Tanaka, H. Structural and dynamical features of multiple metastable glassy states in a colloidal system with competing interactions. Physical Review Letters. 104, 165702-1610 (2010).
  49. Sedgwick, H., Egelhaaf, S. U., Poon, W. C. K. Clusters and gels in systems of sticky particles. Journal of Physics: Condensed Matter. 16, 10-1088 (2004).
  50. Zhang, T. H., Klok, J., Tromp, R. H., Groenewold, J., Kegel, W. K. Non-equilibrium cluster states in colloids with competing interactions. Soft Matter. 8, (2012).
  51. Dinsmore, A. D., Prasad, V., Wong, I. Y., Weitz, D. A. Microscopic structure and elasticity of weakly aggregated colloidal gels. Physical Review Letters. 96, (2006).
  52. Antl, L., et al. The preparation of poly(methyl methacrylate) latices in nonaqueous media. Colloid Surf. 17, 67-78 (1986).
  53. Aarts, D. G. A. L., Tuinier, R., Lekkerkerker, H. N. W. Phase behaviour of mixtures of colloidal spheres and excluded-volume polymer chains. Journal of Physics: Condensed Matter. 14, 7551-7561 (2002).
  54. Crocker, J. C., Weeks, E. R. Particle tracking using IDL. , (2011).
  55. Grier Grier, D. G. Lab Downloadable Software. , (2012).
  56. Smith, R., Friendly Spalding, G. U. s. e. r. -. . Freeware Image Segmentation and Particle Tracking. , (2005).
  57. Blair, D. L., Dufresne, E. R. The Matlab Particle Tracking Code Repository. , (2008).
  58. Kilfoil, M. L. . Biological Physics Software. , (2009).
  59. Milne, G. Particle Tracking. , (2006).
  60. Caswell, T. trackpy: A pure python implementation of Crocker-Grier for single particle tracking. , (2012).
  61. Weeks, E. R. IDL routines to calculate the pair correlation function g(r). , (2005).
  62. Breedveld, V., Crocker, J. C., Weeks, E. R. M. S. D. . , (2005).
  63. Spannuth, M., Conrad, J. C. Confinement-induced solidification of colloid-polymer depletion mixtures. Phys. Rev. Lett. 109, (2012).
  64. Spannuth, M., Conrad, J. C. Dynamics of confined colloid-polymer mixtures. AIP Conf. Proc. 1518, 351-356 (2013).
  65. Pandey, R., Conrad, J. C. Dynamics of confined depletion mixtures of polymers and bidispersed colloids. Soft Matter. , (2013).
  66. Pandey, R., Conrad, J. C. Effects of attraction strength on microchannel flow of colloid–polymer depletion mixtures. Soft Matter. 8, 10695-10703 (2012).
  67. Gelb, L., Gubbins, K. E., Radhakrishnan, R., Sliwinska-Bartkowiak, M. Phase separation in confined systems. Reports on Progress in Physics. 62, 1573-1659 (1999).
  68. Parthasarathy, R. Rapid accurate particle tracking by calculation of radial symmetry centers. Nature Methods. 9, 724-726 (2012).
  69. Peng, B., vander Wee, E., Imhof, A., Van Blaaderen, A. Synthesis of monodisperse, highly cross linked, fluorescent PMMA particles by dispersion polymerization. Langmuir. 28, 6776-6785 (2012).
  70. Elsesser, M. T., Hollingsworth, A. D., Edmond, K. V., Pine, D. J. Large core-shell poly(methyl methacrylate) colloidal clusters: synthesis, characterization, and tracking. Langmuir. 27, 917-927 (2011).
  71. Dullens, R. P. A., Derks, D., van Blaaderen, A., Kegel, W. K. Monodisperse core-shell poly(methyl methacrylate latex colloids). Langmuir. 19, 5963-5966 (2003).
check_url/kr/51461?article_type=t

Play Video

Cite This Article
Pandey, R., Spannuth, M., Conrad, J. C. Confocal Imaging of Confined Quiescent and Flowing Colloid-polymer Mixtures. J. Vis. Exp. (87), e51461, doi:10.3791/51461 (2014).

View Video