Summary

生化分析的分析ATP依赖的染色质重塑酶活性的影响

Published: October 25, 2014
doi:

Summary

Here we describe biochemical assays that can be used to characterize ATP-dependent chromatin remodeling enzymes for their abilities to 1) catalyze ATP-dependent nucleosome sliding, 2) engage with nucleosome substrates, and 3) hydrolyze ATP in a nucleosome- or DNA-dependent manner.

Abstract

Members of the SNF2 family of ATPases often function as components of multi-subunit chromatin remodeling complexes that regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Biochemically dissecting the contributions of individual subunits of such complexes to the multi-step ATP-dependent chromatin remodeling reaction requires the use of assays that monitor the production of reaction products and measure the formation of reaction intermediates. This JOVE protocol describes assays that allow one to measure the biochemical activities of chromatin remodeling complexes or subcomplexes containing various combinations of subunits. Chromatin remodeling is measured using an ATP-dependent nucleosome sliding assay, which monitors the movement of a nucleosome on a DNA molecule using an electrophoretic mobility shift assay (EMSA)-based method. Nucleosome binding activity is measured by monitoring the formation of remodeling complex-bound mononucleosomes using a similar EMSA-based method, and DNA- or nucleosome-dependent ATPase activity is assayed using thin layer chromatography (TLC) to measure the rate of conversion of ATP to ADP and phosphate in the presence of either DNA or nucleosomes. Using these assays, one can examine the functions of subunits of a chromatin remodeling complex by comparing the activities of the complete complex to those lacking one or more subunits. The human INO80 chromatin remodeling complex is used as an example; however, the methods described here can be adapted to the study of other chromatin remodeling complexes.

Introduction

SNF2家庭染色质重塑复合物包括中央SNF2般的ATP酶亚基1,2。一些SNF2状ATP酶的功能单亚基酶,而其他用作较大的多亚基复合物的催化亚基。阐明的分子机制,其中每一个染色质重塑复合物有助于其活动亚基的要求来执行解剖重建过程的生化分析的能力。

ATP依赖的核小体重构的人类INO80复合物和其他染色质重塑酶,可以设想为,与重塑酶,以核小体结合启动一个多步骤的过程,随后激活其DNA和/或核小体依赖性ATP酶,易位于核小体的DNA,和核小体1,2的最终位置改变重塑酶。理解ATP依赖的染色质重塑过程r的分子细节equires重塑反应的染色质重塑复合物在反应中的每个步骤的各个子单元的贡献成单个步骤和定义的清扫。这样的分析需要使用定义的底物分子在体外进行分析核小体重塑和其他活动的能力。

在以前的JOVE协议中,我们描述的程序来生成INO80染色质重塑复合物及其亚与定义亚基组成3。在这里,我们提出了3生化检测,使核小体结合,DNA和核小体的激活ATP酶,而这种复合物相关的核小体重塑活动的定量分析。

Protocol

1,ATP依赖的核小体重构的测定来测量ATP依赖的核小体重构活动,免疫纯化INO80或INO80 subcomplexes孵育与ATP和mononucleosomal衬底,它包含一个单核小体定位于216碱基对,32 P标记的DNA片段的一端。将反应产物再进行电泳在天然聚丙烯酰胺凝胶。 以产生32 P标记的,“601”的DNA片段,从放大的pGEM-3Z-601 4包含端定位的601核小体定位序列的216 bp的DNA片段,使…

Representative Results

该图显示用于表征INO80活动生化分析,包括核小体的滑动( 图1)和结合( 图2)测定法和DNA-或核小体依赖性ATP酶测定( 图3)的代表性结果。 在图1所示的实验中比较了完整INO80复合物的能力,通过FLAG-IES2或FLAG-INO80E纯化的INO80 subcomplexes或者通过FLAG-Ino80ΔN或Ino80ΔNΔHSA精制,催化mononucleosomes汇集了216 bp的,放射性标记的DNA片段?…

Discussion

以确保核小体重构和ATP酶活性,我们观察到在分析依赖INO80复合物的催化活性,并且不污染重塑和/或ATP酶,我们经常测定核小体重构和INO80复合物的催化活性的版本的ATP酶活性,纯化使用野生型INO80同样地进行平行。阴性对照反应缺少ATP也应测定核小体重构的活性时,以测试污染ATP和/或ATP的独立重塑活动的存在,这可能会复杂化的比较INO80复合物或subcomplexes不同制剂的活性实验解释执行。催化INO80?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Work in the authors’ laboratory is supported by a grant from the National Institute of General Medical Sciences (GM41628) and by a grant to the Stowers Institute for Medical Research from the Helen Nelson Medical Research Fund at the Greater Kansas City Community Foundation.

Materials

Name of Reagent/Material Company Catalog Number Comments
Protease Inhibitor Cocktail Sigma P8340
10x PCR reaction buffer  Roche Applied Science  11435094001
Roche Taq DNA Polymerase Roche Applied Science  11435094001
NucAway Nuclease-free Spin Columns  Ambion Cat. # AM10070
ultrapure ATP  USB/Affymetrix 77241 25 UM
bovine serum albumin  Sigma A9418 
N,N,N´,N´-tetramethylethylenediamine (TEMED) Thermo Scientific 17919 Fisher Scientific
40% Acrylamide/Bis 37.5:1 Amresco 0254-500ML
Sonicated salmon sperm DNAs  GE Healthcare 27-4565-01
10% ammonium persulfate (APS) Thermo Scientific 17874
benzonase  Novagen Cat. No. 70664
[α-32P] ATP (3000 Ci/mmol) PerkinElmer BLU003H250UC
dCTP, [α-32P]- 6000Ci/mmol PerkinElmer BLU013Z250UC
Equipment Company
PCR thermal cycler PTC 200 MJ Research PTC 200
Hoefer vertical electrophoresis unit Hoefer SE600X-15-1.5
lubricated 1.5ml microcentrifuge tubes  Costar 3207
Storage Phosphor Screen  Molecular Dynamics 63-0034-79
3MM filter paper Whatman  28458-005 VWR
Typhoon PhosphorImager  GE Healthcare 8600
ImageQuant software GE Healthcare ver2003.02
TLC Glass Plates, PEI-Cellulose F Millipore 5725-7
Immobilon-FL Transfer Membrane 7 x 8.4 Millipore IPFL07810
General purpose survey meter with end-window or pancake GM (Geiger-Mueller) probe Biodex Model 14C

References

  1. Clapier, C. R., Cairns, B. R. The biology of chromatin remodeling complexes. Annual Review of Biochemistry. 78, 273-304 (2009).
  2. Narlikar, G. J., Sundaramoorthy, R., Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 154 (3), 490-503 (2013).
  3. Chen, L., Ooi, S. K., Conaway, J. W., Conaway, R. C. Generation and purification of human INO80 chromatin remodeling complexes and subcomplexes. , (2013).
  4. Lowary, P. T., Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276 (1), (1006).
  5. Owen-Hughes, T., et al. Analysis of nucleosome disruption by ATP-driven chromatin remodeling complexes. Methods Mol. Biol. 119, 319-331 (1999).
  6. Udugama, M., Sabri, A., Bartholomew, B. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol. Cell Biol. 31 (4), 662-673 (2011).
  7. Jin, J., et al. A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex. Journal of Biological Chemistry. 280 (50), 41207-41212 (1074).
  8. Chen, L., et al. Subunit organization of the human INO80 chromatin remodeling complex: an evolutionarily conserved core complex catalyzes ATP-dependent nucleosome remodeling. Journal of Biological Chemistry. 286 (13), 11283-11289 (2011).
  9. Hamiche, A., Sandaltzopoulos, R., Gdula, D. A., Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell. 97 (7), 833-842 (1999).
  10. Polach, K. J., Widom, J. Restriction enzymes as probes of nucleosome stability and dynamics. Methods Enzymol. 304, 278-298 (1999).
  11. Anderson, J. D., Thastrom, A., Widom, J. Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation, Mol.Cell Biol. 22 (20), 7147-7157 (2002).
  12. Saha, A., Wittmeyer, J., Cairns, B. R. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nature Structural and Molecular Biology. 12 (9), 747-755 (2005).
  13. Gottschalk, A. J., et al. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler, Proc.Natl.Acad.Sci.U.S.A. 106 (33), 13770-13774 (2009).
  14. Clapier, C. R., Cairns, B. R. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature. 492 (7428), 280-284 (2012).
  15. Brune, M., Hunter, J. L., Corrie, J. E. T., Direct Webb, M. R. Real-Time Measurement of Rapid Inorganic Phosphate Release Using a Novel Fluorescent Probe and Its Application to Actomyosin Subfragment 1 ATPase, Biochemistry. 33 (27), 8262-8271 (1994).
  16. Luk, E., et al. Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell. 143 (5), 725-736 (2010).
check_url/kr/51721?article_type=t

Play Video

Cite This Article
Chen, L., Ooi, S., Conaway, J. W., Conaway, R. C. Biochemical Assays for Analyzing Activities of ATP-dependent Chromatin Remodeling Enzymes. J. Vis. Exp. (92), e51721, doi:10.3791/51721 (2014).

View Video