Summary

Enriquecimento para resistente à quimioterapia do cancro do ovário células-tronco de linhas de células humanas

Published: September 10, 2014
doi:

Summary

Células-tronco cancerosas (CSCs) estão implicados na reincidência do tumor devido a chemoresistance. Nós otimizamos um protocolo para a seleção e expansão dos CSCs de linhas celulares de cancro do ovário. Ao tratar as células com a cisplatina quimioterapêutico e a cultura de uma célula-tronco nos meios de promoção para enriquecer culturas CSC não aderentes.

Abstract

Células-tronco cancerosas (CSCS) são definidos como um subconjunto de ciclismo lento e células indiferenciadas que se dividem de forma assimétrica para gerar altamente proliferativa, invasiva e células tumorais quimiorresistentes. Portanto, CSCs são uma população de células atraente para direcionar terapeuticamente. CSCs são previstos para contribuir para um número de tipos de tumores, incluindo os do sangue, cérebro, pulmão, tracto gastrointestinal, próstata, ovário. Isolando e enriquecendo a população de células tumorais para CSCs irá permitir aos pesquisadores estudar as propriedades, genética e resposta terapêutica dos CSCs. Geramos um protocolo que enriquece reprodutível para CSCs câncer de ovário de linhas celulares de cancro do ovário (SKOV3 e OVCA429). As linhas de células são tratadas com 20 pM de cisplatina durante 3 dias. As células sobreviventes são isoladas e cultivadas em meios de células-tronco isento de soro contendo citoquinas e factores de crescimento. Nós demonstramos um enriquecimento dessas CSCs purificados por análise das células isoladas, para known marcadores de células estaminais Oct4, nanog, e Prom1 (CD133) e a expressão da superfície das células de CD177 e CD133. A exposição CSCs aumento chemoresistance. Este método de isolamento de CSCs é uma ferramenta útil para o estudo do papel das CSCs na quimiorresistência de tumor e de recaídas.

Introduction

Resistance to chemotherapy is a major impediment to the treatment and cure of cancer. Ovarian cancer is the 5th leading cause of cancer-related deaths among women in the United States (American Cancer Society Facts and Figures 2013). Patients initially respond well to chemotherapy, but most patients relapse1. After relapse patients are treated with a variety of additional chemotherapy agents with very little benefit2. General properties of CSCs include unlimited proliferative capabilities, retention of an undifferentiated state, resistance to drug treatment, efficient DNA repair, and ability to generate malignant tumor cells with different phenotypes3. CSCs frequently exhibit expression of stem cell genes such as Nanog, Oct4, Sox2, Nestin, CD133, and CD117. CSCs often express elevated levels of ABCG2, and ALDH genes that may contribute to drug efflux and metabolism3,4.

The first definitive evidence for CSCs was demonstrated by isolating acute myeloid leukemia-initiating cells that were capable of self-renewal and tumor generation5. These leukemic stem cells expressed surface CD34 and generated leukemia in NOD/SCID (immunocompromised) mice5. Since then CSCs have been identified in many cancer types including leukemias/lymphomas, breast, bladder, colorectal, endometrial, sarcomas, hepatocellular carcinoma, melanomas, gliomas, ovarian, pancreatic, prostate, squamous cell carcinoma, and lung6. Therefore, being able to study this subtype of cancer cell is advantageous.

The goal of this study is to create a protocol for the selection and isolation of chemoresistant CSCs. Several methods have been reported for the isolation of CSCs from ovarian cancer cell lines. Non-adherent spheroids isolated from OVCAR-3, SKOV3, or HO8910 cultures demonstrate stem-like properties7,8. Isolation of CD133+ cells from OVCAR-3 cultures also yields CSCs. CSCs have also been selected in culture by treatment with chemotherapeutic agents. Treating tumor cell lines (OVCA433, Hey, and SKOV3 cells) with cisplatin and paclitaxel allows for the expansion and isolation of CSCs4,9. While culture of some cell types in CSC media leads to isolation of CSCs, SKOV3 cells did not survive culture in serum-free media or form sphere cells4. Therefore, treatment of cells with cisplatin and paclitaxel aided the expansion or isolation of this population4.

Using a modification of the procedure presented by Ma and colleagues4 we developed a method to isolate CSCs from the ovarian cancer cell lines. Our protocol is advantageous as it yields more viable cells while using less toxic chemotherapeutic agents. Cells are treated with cisplatin and subsequently grown in serum-free media supplemented with growth factors (stem cell media). We isolate the resulting non-adherent sphere cells and assay them for their expression of stem cell markers. This model enables the study of CSC properties and response to drug therapy.

Protocol

1. celular Cultura e Labeling fluorescentes de câncer de ovário linhas celulares Prepare mídia SKOV3: meios de McCoy suplementado com 10% soro fetal bovino (FBS), 0,1 mM de L-glutamina, 50 U / ml de penicilina, e 50 ug / ml de estreptomicina. Manter OVCA429 células em meio essencial mínimo (MEM) suplementado com 10% de FBS, piruvato de sódio 1 mM, 0,1 mM de L-glutamina, 50 U / ml de penicilina, e 50 ug / ml de estreptomicina. Propagar SKOV3 e OVCA429 linhas celulares numa incubadora humidifica…

Representative Results

Para demonstrar que isolámos CSCs de linhas celulares de cancro de ovário epitelial utilizando o tratamento com cisplatina, que em primeiro lugar as imagens adquiridas das linhas de células antes do tratamento e após selecção. Nós usamos a microscopia de luz para capturar imagens de aderente (não tratada) SKOV3 e OVCA429 células e SKOV3 e OVCA429 CSCs (Figura 1). CSCs aparecem redonda e não ligado às placas de cultura de tecidos (Figuras 1 e 2). Mostramos tam…

Discussion

CSCs que são resistentes à terapia pode ser responsável por recaída após o tratamento do tumor primário. Caracterização dos CSCs podem levar a melhores terapias para o câncer de ovário. Os parâmetros críticos no estabelecimento de CSCs quimiorresistentes utilizando o protocolo anteriormente referido, são cronometrar o tempo de tratamento com a quimioterapia e a concentração de quimioterapia. Ao usar o protocolo em Ma et al. verificou-se que ao fim de 7 dias de tratamento com cisplatina e paclitax…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Serene Samyesudhas and Dr. Lynn Roy assisted in preparing samples for filming.

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
McCoy Life Technologies 16600-108 Warm to 37C prior to use
DMEM / F12 serum free Life Technologies  11320-033 Warm to 37C prior to use
Minimal Essential Media Life Technologies  42360032 Warm to 37C prior to use
Sodium Pyruvate Life Technologies  11360070
Polybrene Millipore TR-1003-G
Blasticidin Life Technologies  R21001
Fetal Bovine Serum  Atlas Biologicals F-0500-A
Penicillin-streptomycin  Life Technologies 15070-063
Cisplatin Sigma-Aldrich T7402-5MG Caution: Toxic Use precautions
pLenti-suCMV-Rsv Gentarget LVP023 BSL2 approval needed
Insulin Sigma-Aldrich I-1882
Human Recombinant EGF  Cell Signaling Technology 8916LC
bFGF BD biosciences 354060
LIF Santa Cruz sc-4988A
Bovine Serum Albumin Roche 03 116 956 001
TRIzol Life Technologies 15596-018
High Capacity cDNA Reverse Transcription Kit   Applied Biosystems 4368813
IQ Multiplex Powermix BioRad 1725849
Accumax Millipore
Primers Integrated DNA Technology individually designed and ordered (see protocol for sequnces)
Anti-CD133 PE Milenyl 130-098-826 Primer/probe sets are light sensitive
CD117-Biotin Miltenly 130-098-570
AntiBiotin-FITC Miltenly 130-098-796
Paraformaldehyde Sigma-Aldrich P6148-1KG Caution: Toxic always prepare in hood and make fresh.
Trypsin Life Technologies 25300062
MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide)  Sigma-Aldrich 25200-072
EVOS Fl Epifluorescence and Transmitted Light Microscope Advanced Microscopy Group
Biorad CFX96 C1000 System Biorad
Beckman Coulter FC500 Flow Cytometer  Beckman Coulter
Spectramax 340PC384  Molecular Devices

References

  1. Pennington, K., Pulaski, H., Pennington, M., Liu, J. R. Too Much of a Good Thing: Suicide Prevention Promotes Chemoresistance in Ovarian Carcinoma. Curr Cancer Drug Targets. 10, 575-583 (2010).
  2. Thigpen, T. A rational approach to the management of recurrent or persistent ovarian carcinoma. Clin Obstet Gynecol. 55, 114-130 (2012).
  3. Burgos-Ojeda, D., Rueda, B. R., Buckanovich, R. J. Ovarian cancer stem cell markers: prognostic and therapeutic implications. Cancer letters. 322, 1-7 (2012).
  4. Ma, L., Lai, D., Liu, T., Cheng, W., Guo, L. Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3. Acta Biochim Biophys Sin (Shanghai). 42, 593-602 (2010).
  5. Bonnet, D., Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine. 3, 730-737 (1997).
  6. Alison, M. R., Lim, S. M., Nicholson, L. J. Cancer stem cells: problems for therapy. The Journal of pathology. 223, 147-161 (2011).
  7. Luo, X., Dong, Z., Chen, Y., Yang, L., Lai, D. Enrichment of ovarian cancer stem-like cells is associated with epithelial to mesenchymal transition through an miRNA-activated AKT pathway. Cell proliferation. 46, 436-446 (2013).
  8. Wang, L., Mezencev, R., Bowen, N. J., Matyunina, L. V., McDonald, J. F. Isolation and characterization of stem-like cells from a human ovarian cancer cell line. Molecular and cellular biochemistry. 363, 257-268 (2012).
  9. Abubaker, K., et al. Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Molecular cancer. 12, 24 (2013).
  10. Conic, I., Dimov, I., Tasic-Dimov, D., Djordjevic, B., Stefanovic, V. Ovarian epithelial cancer stem cells. ScientificWorldJournal. 11, 1243-1269 (2011).
  11. Liu, K. C., et al. Ovarian cancer stem-like cells show induced translineage-differentiation capacity and are suppressed by alkaline phosphatase inhibitor. Oncotarget. 4 (12), 2366-2382 (2013).
  12. Liu, T., Cheng, W., Lai, D., Huang, Y., Guo, L. Characterization of primary ovarian cancer cells in different culture systems. Oncology reports. 23, 1277-1284 (2010).
check_url/kr/51891?article_type=t

Play Video

Cite This Article
Cole, J. M., Joseph, S., Sudhahar, C. G., Cowden Dahl, K. D. Enrichment for Chemoresistant Ovarian Cancer Stem Cells from Human Cell Lines. J. Vis. Exp. (91), e51891, doi:10.3791/51891 (2014).

View Video