Summary

突触质膜和突触后密度蛋白采用不连续蔗糖梯度准备

Published: September 03, 2014
doi:

Summary

本文将详细介绍与突触质膜上超速不连续蔗糖梯度相关蛋白的富集。随后的制备突触后密度蛋白也被描述。蛋白制剂适用于免疫印迹或2D DIGE分析。

Abstract

神经元亚细胞分离技术,允许被贩卖,并从突触蛋白的定量。如在1960年代末期最初所述,突触质膜相关蛋白,可以通过超速离心法在蔗糖密度梯度分离。一旦突触膜分离,大分子复合物被称为突触后密度可以随后,由于其不溶于洗涤剂中分离。用于分离突触细胞膜和突触后密度蛋白的技术基本上保持40年后相同的,并且被广泛应用于目前神经科学研究。本文将详细介绍与突触细胞膜及突触后密度采用不连续蔗糖密度梯度相关的蛋白质的分离。导致蛋白制剂适用于免疫印迹或2D DIGE分析。

Introduction

神经元通过突触进行通信,并且该通信质量是通过在蛋白质在突触的组成改​​变调节到很大程度。特别是位于突触后密度蛋白通过密切脚手架神经递质受体与它们的信号转导系统1参与神经元沟通。此外,在突触效能的强度持久的变化是由于突触后密度1-6添加或去除受体的控制。因此,突触蛋白的分离和定量是一种必要的和有用的技术,来获得有关该神经元响应的刺激和改变突触效能7的方式。本文介绍了一种常见的技术,通过离心分离从啮齿动物脑组织中突触蛋白在连续蔗糖梯度。突触细胞膜部分可以得到丰富和孤立的基础上其在蔗糖密度,已根据经验确定,以类似于1.2M的蔗糖。

根据不同的生物学问题,亚细胞组分可以由蔗糖或珀可连续或不连续梯度进行分离。连续梯度允许蛋白质成多个组分的分离;这可以是特别有用的,以证明一个给定的级分8中的共定位的蛋白质。然而,连续梯度的制备是更费力的和是不必要的许多应用。不连续的梯度是比较容易制备和可用于蛋白分离成几,通常定义的馏分。这是由增加的摩尔浓度的3蔗糖层的不连续梯度,已被广泛用于分离与突触质膜(SPM)相关的蛋白质。本突触质膜级分可被进一步加工,以突触后密度fractioN(PSD)的洗涤剂不溶部分的去污剂处理和隔离。

当这个过程在1960年的9,10首次被描述,电子显微镜被用来证实细胞器及膜的大致限定突触质膜和突触后密度级分9-14。这些研究证明了包含前和突触后膜和在SPM分数突触小泡;洗涤剂治疗主要是电子致密后,突触后密度为可见的。在该过程中,低渗休克用于从细胞体10夹断一样处理。这个步骤需要的事实,线粒体是渗透冲击更耐和保持不动,并且因此它们在蔗糖梯度( 图1)的底部沉淀的优点。

用同样的富集技术,对SPM和PSD分数分别为第一生化通过聚丙烯酰胺凝胶电泳和主要蛋白质组分15-17的序列来定义。随后免疫印迹分析已被用于检测和定量突触蛋白的水平,并进一步确定这些级分( 图2)。我们已经使用该技术在我们的实验室进行量化改变多巴胺转运时Slc6a3基因被复制在小鼠18所发生的突触水平。我们也使用这种技术在NMDA受体缺陷小鼠揭示突触特异性降低的蛋白质,是在DISC1相互作用组19的一部分。

它是由免疫印迹分析了SPM的馏分含有突触小泡膜蛋白,核内体标记物,线粒体蛋白质,膜相关合成酶和信号转导分子,以及突触后密度的组成部分和突触质膜20-23明显。 ËVEN PSD级分可具有污染具有丰富的线粒体蛋白质,它可能有必要进行第二梯度沉降或额外的纯化步骤,以除去它们13。最近,定量质谱法提供了超过100个蛋白质在单独的突触后密度的列表,以及这些部件24,25的相对丰度的指示。

Protocol

以下协议符合动物保护的加拿大议会的指引,并已获得医药动物保健委员会的教授在多伦多大学。 1,准备好所需的试剂中的说明表1 添加蛋白酶和磷酸酶(如果需要的话)的抑制剂,以所有的蔗糖溶液,缓冲液和DDH 2 O的以表1所列的浓度。重要:执行所有的步骤在4℃和预冷所有在实验前的起始试剂和设备。标签所有管道,包括超速离心管,用记?…

Representative Results

在蔗糖密度梯度的制备方法应导致蔗糖(0.8,1.0和1.2M的蔗糖)的3摩尔的解决方案的明确分离。参见图3A为渐变的示例的蛋白质样品加入之前。如果梯度制备太多提前,或者如果它被制备的​​长凳上表面与来自其它设备的振动,梯度将受到损害,并适当分离,将无法实现。如果三种解决方案的明确分离是不可见的,最好是加入的蛋白样品之前,使一个新的梯度。参见图3B…

Discussion

还有在该过程的几个步骤,这对于一个成功的结果至关重要。在步骤3中,重要的是均质化的一致度,实现对每个样品。当均质化组织与马达驱动的均化器,以恒定速度不仅用于杵的旋转,而且还与笔划的数量。在渗透休克的温育时间应精确,因为在低渗溶液中的扩展同质或孵化将裂解线粒体和污染SPM样品。

另一个关键步骤是在试剂,尤其是蔗糖溶液的制备;如果该蔗糖溶液的…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank Dr. Mike Ehlers and his laboratory members for originally demonstrating the protocol for subcellular fractionation of synaptic plasma membranes. We also thank Wendy Horsfall for management of the mouse colonies. This work was supported by operating grants from CIHR (AJR and AS).

Materials

1M HEPES, pH 7.4 BioShop HEP003.100
HEPES BioShop HEP001.500 
Sucrose  BioShop SUC507.1
EDTA BioBasic EB0185
PMSF BioShop PMS123.5
Aprotinin BioShop APR600.1
Leupeptin BioShop LEU001.1
Pepstatin BioShop PEP605.5
Benzamidine BioShop BEN601.25
Sodium fluoride BioShop SFL001.100
Sodium pyrophosphate BioShop SPP310.100
Sodium orthovanadate BioShop SOV664.10
β-glycerophosphate BioShop GYP001.10
Triton X-100 BioShop TRX506.500
18G x 1 ½” needle BD 305196
1cc syringe BD 309659
Name of Equipment Company Catalog number
Glass Teflon homogenizer Kontes Duall 23 VWR KT885450-0023
IKA Model RW 16 Basic Stirrer IKA Works 2572100
Sorvall SM-24 Fixed Angle Rotor ThermoScientific 29017
Sorvall RC 6 Plus Centrifuge ThermoScientific 46910
Thinwall Polyallomer Tubes (13.2mL) Beckman Coulter 331372
SW 41 Ti Rotor Swinging Bucket Beckman Coulter 331362
Beckman L-80 Floor Ultracentrifuge Beckman Coulter
Thickwall Polycarbonate Tubes (3.5mL) Beckman Coulter 349622
TLA-100.3 Fixed Angle Rotor Beckman Coulter 349481
Beckman TL-100 Tabletop Ultracentrifuge Beckman Coulter

References

  1. Delint-Ramirez, I., et al. In vivo composition of NMDA receptor signaling complexes differs between membrane subdomains and is modulated by PSD-95 and PSD-93. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. 30, 8162-8170 (2010).
  2. Wang, Q., et al. The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function. Mol Psychiatry. 16, (2010).
  3. Ehlers, M. D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron. 28, 511-525 (2000).
  4. Tomita, S., Fukata, M., Nicoll, R. A., Bredt, D. S. Dynamic interaction of stargazin-like TARPs with cycling AMPA receptors at synapses. Science. 303, 1508-1511 (2004).
  5. Ehlers, M. D., Heine, M., Groc, L., Lee, M. C., Choquet, D. Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron. 54, 447-460 (2007).
  6. Bats, C., Groc, L., Choquet, D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron. 53, 719-734 (2007).
  7. Ehlers, M. D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci. 6, 231-242 (2003).
  8. Cartier, E. A., et al. A biochemical and functional protein complex involving dopamine synthesis and transport into synaptic vesicles. J Biol Chem. 285, 1957-1966 (2010).
  9. Rodriguez de Lores, A., Alberici, M., De Robertis, E. Ultrastructural and enzymic studies of cholinergic and non-cholinergic synaptic membranes isolated from brain cortex. Journal of Neurochemistry. 14, 215-225 (1967).
  10. Gray, E. G., Whittaker, V. P. The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat. 96, 79-88 (1962).
  11. Cotman, C. W., Taylor, D. Isolation and structural studies on synaptic complexes from rat brain. J Cell Biol. 55, 696-711 (1972).
  12. Cotman, C. W., Banker, G., Churchill, L., Taylor, D. Isolation of postsynaptic densities from rat brain. The Journal of Cell Biology. 63, 441-455 (1974).
  13. Carlin, R. K., Grab, D. J., Cohen, R. S., Siekevitz, P. Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. The Journal of Cell Biology. 86, 831-845 (1980).
  14. Jones, D. H., Matus, A. I. Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta. 356, 276-287 (1974).
  15. Kennedy, M. B., Bennett, M. K., Erondu, N. E. Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase. Proceedings of the National Academy of Sciences of the United States of America. 80, 7357-7361 (1983).
  16. Moon, I. S., Apperson, M. L., Kennedy, M. B. The major tyrosine-phosphorylated protein in the postsynaptic density fraction is N-methyl-D-aspartate receptor subunit 2B. Proceedings of the National Academy of Sciences of the United States of America. 91, 3954-3958 (1994).
  17. Cho, K. O., Hunt, C. A., Kennedy, M. B. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron. 9, 929-942 (1992).
  18. Salahpour, A., et al. Increased amphetamine-induced hyperactivity and reward in mice overexpressing the dopamine transporter. Proc Natl Acad Sci U S A. 105, 4405-4410 (2008).
  19. Ma, D. K., et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science. 323, 1074-1077 (2009).
  20. Budreck, E. C., Scheiffele, P. Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. The European Journal of Neuroscience. 26, 1738-1748 (2007).
  21. Wu, J., et al. Arc/Arg3.1 regulates an endosomal pathway essential for activity-dependent beta-amyloid generation. Cell. 147, 615-628 (2011).
  22. Huttner, W. B., Schiebler, W., Greengard, P., De Camilli, P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol. 96, 1374-1388 (1983).
  23. Nagy, A., Baker, R. R., Morris, S. J., Whittaker, V. P. The preparation and characterization of synaptic vesicles of high purity. Brain Res. 109, 285-309 (1976).
  24. Cheng, D., et al. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Molecular & Cellular Proteomics : MCP. 5, 1158-1170 (2006).
  25. Sheng, M., Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem. 76, 823-847 (2007).
  26. Sambrook, J., Fritsch, E. F., Maniatis, T. . Molecular cloning : a Laboratory Manual. , (1989).
  27. Eggena, M., et al. Identification of histone H1 as a cognate antigen of the ulcerative colitis-associated marker antibody pANCA. J Autoimmun. 14, 83-97 (2000).
  28. Salahpour, A., et al. Homodimerization of the beta2-adrenergic receptor as a prerequisite for cell surface targeting. J Biol Chem. 279, 33390-33397 (2004).
  29. Bernocco, S., et al. Sequential detergent fractionation of primary neurons for proteomics studies. Proteomics. 8, 930-938 (2008).
  30. Grunewald, T. G., et al. Nuclear localization and cytosolic overexpression of LASP-1 correlates with tumor size and nodal-positivity of human breast carcinoma. BMC Cancer. 7, 198 (2007).
  31. Heimann, K., Percival, J. M., Weinberger, R., Gunning, P., Stow, J. L. Specific isoforms of actin-binding proteins on distinct populations of Golgi-derived vesicles. J Biol Chem. 274, 10743-10750 (1999).
  32. Neff, R. A., Gomez-Varela, D., Fernandes, C. C., Berg, D. K. Postsynaptic scaffolds for nicotinic receptors on neurons. Acta Pharmacol Sin. 30, 694-701 (2009).
  33. Cella, N., Cornejo-Uribe, R. R., Montes, G. S., Hynes, N. E., Chammas, R. The lysosomal-associated membrane protein LAMP-1 is a novel differentiation marker for HC11 mouse mammary epithelial cells. Differentiation. 61, 113-120 (1996).
  34. Otera, H., et al. Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: conserved Pex5p WXXXF/Y motifs are critical for matrix protein import. Mol Cell Biol. 22, 1639-1655 (2002).
  35. Goubaeva, F., et al. Cardiac mitochondrial connexin 43 regulates apoptosis. Biochem Biophys Res Commun. 352, 97-103 (2007).
  36. Lamers, K. J., et al. Protein S-100B, neuron-specific enolase (NSE), myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF) and blood of neurological patients. Brain Res Bull. 61, 261-264 (2003).
  37. Arunachalam, L., et al. Munc18-1 is critical for plasma membrane localization of syntaxin1 but not of SNAP-25 in PC12 cells. Mol Biol Cell. 19, 722-734 (2008).
  38. Brandstatter, J. H., Fletcher, E. L., Garner, C. C., Gundelfinger, E. D., Wassle, H. Differential expression of the presynaptic cytomatrix protein bassoon among ribbon synapses in the mammalian retina. Eur J Neurosci. 11, 3683-3693 (1999).
check_url/kr/51896?article_type=t

Play Video

Cite This Article
Bermejo, M. K., Milenkovic, M., Salahpour, A., Ramsey, A. J. Preparation of Synaptic Plasma Membrane and Postsynaptic Density Proteins Using a Discontinuous Sucrose Gradient. J. Vis. Exp. (91), e51896, doi:10.3791/51896 (2014).

View Video