Summary

瘢痕創傷修復のマウス胎児皮膚モデル

Published: January 16, 2015
doi:

Summary

During mammalian development, early gestational skin wounds heal without a scar. Here we detail a reliable and reproducible model of fetal scarless wound healing in the cutaneous dorsum of E16.5 (scarless) and E18.5 (scarring) mouse embryos.

Abstract

Early in utero, but not in postnatal life, cutaneous wounds undergo regeneration and heal without formation of a scar. Scarless fetal wound healing occurs across species but is age dependent. The transition from a scarless to scarring phenotype occurs in the third trimester of pregnancy in humans and around embryonic day 18 (E18) in mice. However, this varies with the size of the wound with larger defects generating a scar at an earlier gestational age. The emergence of lineage tracing and other genetic tools in the mouse has opened promising new avenues for investigation of fetal scarless wound healing. However, given the inherently high rates of morbidity and premature uterine contraction associated with fetal surgery, investigations of fetal scarless wound healing in vivo require a precise and reproducible surgical model. Here we detail a reliable model of fetal scarless wound healing in the dorsum of E16.5 (scarless) and E18.5 (scarring) mouse embryos.

Introduction

胎児皮膚創傷は、妊娠後期1まで急速かつscarlessly癒す。胎児の瘢痕創傷修復は、正常な組織構造および機能の再生によって特徴付けられる。瘢痕化の表現型への瘢痕からの移行は、ヒトにおけるマウス2,3における胎生18日(E18)の周りに妊娠後期に起こる。成人と比較して、胎児の創傷修復を迅速上皮、結合組織の堆積、および線維芽細胞の遊走によって特徴付けられる。

多くの研究は、初期の胎児の発達中の瘢痕創傷治癒の現象の可能な説明を提供してきました。炎症は、大人の創傷修復の基本的なコンポーネントです。しかし、胎児の創傷は、急性炎症4の欠如によって特徴づけられる。これは胎児の段階で免疫系の機能的な未熟さの結果であるかどうかは不明なままである。最近の研究では、豊富に違い、マットと示唆urity、およびE18胎児の皮膚対E15における肥満細胞の機能は、少なくともマウス3において、瘢痕の表現型への移行に関与し得る。他の研究では、プロパティと胎児および成人の創傷マクロファージの存在量の違いが胎児の創傷修復5中に、通常の細胞外マトリックス(ECM)の改革のために責任があることを断定。

胎児および成人の発達中の環境要因の違いはまた、創傷の修復に影響する場合があります。 Longakerらは、胎児から創傷液が成人の創傷液6でなしに比べ、ヒアルロン酸刺激活性の高いレベルを持っていることを示した。従って、胎児の創傷環境におけるヒアルロン酸の高いレベル、細胞運動性および増殖につながる微小環境を促進するグリコサミノグリカンは、初期の胎児の発育中に見られる瘢痕の表現型の原因である可能性がある。フェタチーズはその事実に証拠ポイントのその他のラインLの創傷環境は、比較的低酸素および成長因子7に富む無菌羊水中に浸漬される。しかし、決定的な答えは、線維性の修復に瘢痕再生への移行をトリガー胚形成の間の重要なイベントや要因のために提供されていない。

胎児に瘢痕治癒の責任のメカニズムを理解することは、正確で再現性のあるモデルを必要とする。ここでは詳細E16.5(瘢痕)とE18.5(瘢痕化)マウス胚の背で胎児の瘢痕創傷治癒の再現可能なモデル。さらに、このモデルの小さな変化は、胎児の創傷及び皮膚8,9の遺伝子発現解析など、さらなる研究の数を実行するために利用することができる。正確なタイミング妊娠がこの胎児の瘢痕創傷治癒モデルの成功した要約のために重要であることを考えると、私たちは過剰排卵時限妊娠についても詳細私たちのプロトコル。

Protocol

注:この論文で説明されているすべての手順は、実験動物管理上のスタンフォードの紛争処理パネル(APLAC)によって確立されたガイドラインに従って実施されている。 1.時限妊娠 – 過排卵技術(図1) 注:正確にE16.5とE18.5での胎児手術のためのマウス胚の妊娠期間のタイミングは非常に重要である。このセクションの我々の詳細には過剰排卵を誘発?…

Representative Results

組織学的分析のために、背側の皮膚E16.5及びE18.5における皮膚創傷マウス胚を4%PFAで固定し48時間後創傷、収穫されるべきであり、パラフィン包埋した。蛍光トランスジェニックモデルでは、10月との凍結保存が適切であり得る。細胞および結合組織の構造を可視化するために使用できるいくつかの汚れがある。ヘマトキシリンとエオシン、核青と好酸球の構造( すなわち 、細胞質と?…

Discussion

ここで紹介するの外科的プロトコルは、最初に私たちの研究室10が2006年に出版さ胎児マウスの瘢痕治癒の切除モデルについて説明します。切除創傷11の他の確立されたモデルに加えて、胎児マウス瘢痕治癒の切開モデルが同様に存在する12,13。サル、子羊、ウサギ、オポッサム、ラットで胎児の瘢痕創傷治癒の調査は、14〜17を報告されている。しかし、マウス…

Disclosures

The authors have nothing to disclose.

Acknowledgements

この作品は、(HPL)は、NIH助成金R01 GM087609、(MTL)は(HPL)のアンソニー·シュウ、NIHのグラントU01のHL099776に敬意を表しイングリッド·レイとビル·シュウからの贈り物、Hagey研究のための助成金によって部分的にサポートされていました小児再生医療と(MTLとHPLへ)オーク財団。 GGWはスタンフォード大学医学部、スタンフォード医学者研修プログラム、及びNIGMS訓練助成金GM07365によってサポートされていました。 MSHはCIRM臨床フェロー研修グラントTG2-01159によってサポートされていました。 WXHはサーノフ循環器財団からの資金によってサポートされていました。

Materials

Name of Material/Equipment Company Catalog Number Comments/Description
7-O MONOSOF Suture eSuture SN-1647G
Surgical Forceps Kent Scientific INS650916
Micro-scissors Kent Scientific INS600127
Autoclip 9mm Texas Scientific Instruments 205060
Insulin Syringe Thermo Fisher Scientific 22-272-382
Black Pigment AIMS 242
BD Safety-Lok 3ml Syringe BD Biosciences 309596
Phosphate Buffered Saline Life Technologies 10010-049
OPMI-MD Surgical Microscope Carl Zeiss Surgical Inc
Pregnant Mares Serum (PMS) Millipore 367222
Human Chorionic Gonadotropin (HCG) Sigma-Aldrich CG10
Povidone Iodine Prep Solution Dynarex 1415
Nair (depilatory cream) Church and Dwight Co. 22600267058

References

  1. Larson, B. J., Longaker, M. T., Lorenz, H. P. Scarless fetal wound healing: a basic science review. Plastic and reconstructive surgery. 126, 1172-1180 (2010).
  2. Wilgus, T. A. Regenerative healing in fetal skin: a review of the literature. Ostomy/wound management. 53, 16-31 (2007).
  3. Wulff, B. C., et al. Mast cells contribute to scar formation during fetal wound healing. The Journal of investigative dermatology. 132, 458-465 (2012).
  4. Lorenz, H. P., Adzick, N. S. Scarless skin wound repair in the fetus. The Western journal of medicine. 159, 350-355 (1993).
  5. Longaker, M. T., et al. Wound healing in the fetus. Possible role for inflammatory macrophages and transforming growth factor-beta isoforms. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2, 104-112 (1994).
  6. Longaker, M. T., et al. Studies in fetal wound healing. IV. Hyaluronic acid-stimulating activity distinguishes fetal wound fluid from adult wound fluid. Annals of surgery. 210, 667-672 (1989).
  7. Colombo, J. A., Napp, M., Depaoli, J. R., Puissant, V. Trophic influences of human and rat amniotic fluid on neural tube-derived rat fetal cells. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. 11, 347-355 (1993).
  8. Colwell, A. S., Longaker, M. T., Peter Lorenz, H. Identification of differentially regulated genes in fetal wounds during regenerative repair. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 16, 450-459 (2008).
  9. Hu, M. S., et al. Gene expression in fetal murine keratinocytes and fibroblasts. The Journal of surgical research. , (2014).
  10. Colwell, A. S., Krummel, T. M., Longaker, M. T., Lorenz, H. P. An in vivo mouse excisional wound model of scarless healing. Plastic and reconstructive surgery. 117, 2292-2296 (2006).
  11. Wilgus, T. A., et al. The impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing. The American journal of pathology. 165, 753-761 (2004).
  12. Iocono, J. A., Ehrlich, H. P., Keefer, K. A., Krummel, T. M. Hyaluronan induces scarless repair in mouse limb organ culture. Journal of pediatric surgery. 33, 564-567 (1998).
  13. Chopra, V., Blewett, C. J., Krummel, T. M. Transition from fetal to adult repair occurring in mouse forelimbs maintained in organ culture. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 5, 47-51 (1997).
  14. Adzick, N. S., Longaker, M. T. Animal models for the study of fetal tissue repair. The Journal of surgical research. 5, 47-51 (1991).
  15. Block, M. Wound healing in the new-born opossum (Didelphis virginianam). Nature. 187, 340-341 (1960).
  16. Longaker, M. T., Dodson, T. B., Kaban, L. B. A rabbit model for fetal cleft lip repair. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons. 48, 714-719 (1990).
  17. Longaker, M. T., et al. A model for fetal cleft lip repair in lambs. Plastic and reconstructive surgery. 90, 750-756 (1992).
check_url/kr/52297?article_type=t

Play Video

Cite This Article
Walmsley, G. G., Hu, M. S., Hong, W. X., Maan, Z. N., Lorenz, H. P., Longaker, M. T. A Mouse Fetal Skin Model of Scarless Wound Repair. J. Vis. Exp. (95), e52297, doi:10.3791/52297 (2015).

View Video