Summary

纤毛对小鼠的主要嗅觉系统整装标签

Published: December 27, 2014
doi:

Summary

Cilia of olfactory sensory neurons contain proteins of the signal transduction cascade, but a detailed spatial analysis of their distribution is difficult in cryosections. We describe here an optimized approach for whole mount labeling and en face visualization of ciliary proteins.

Abstract

The mouse olfactory system comprises 6-10 million olfactory sensory neurons in the epithelium lining the nasal cavity. Olfactory neurons extend a single dendrite to the surface of the epithelium, ending in a structure called dendritic knob. Cilia emanate from this knob into the mucus covering the epithelial surface. The proteins of the olfactory signal transduction cascade are mainly localized in the ciliary membrane, being in direct contact with volatile substances in the environment. For a detailed understanding of olfactory signal transduction, one important aspect is the exact morphological analysis of signaling protein distribution. Using light microscopical approaches in conventional cryosections, protein localization in olfactory cilia is difficult to determine due to the density of ciliary structures. To overcome this problem, we optimized an approach for whole mount labeling of cilia, leading to improved visualization of their morphology and the distribution of signaling proteins. We demonstrate the power of this approach by comparing whole mount and conventional cryosection labeling of Kirrel2. This axon-guidance adhesion molecule is known to localize in a subset of sensory neurons and their axons in an activity-dependent manner. Whole mount cilia labeling revealed an additional and novel picture of the localization of this protein.

Introduction

鼻腔鼠标嗅上皮包括6-10万双极嗅感觉神经元1。每个嗅觉神经元选择的1200气味受体基因的表达之一。检测加臭剂的开始由气味结合到嗅觉受体2,其然后激活腺苷酸环化酶III型(ACIII)3经由嗅觉特异性G蛋白GαOLF 4。由此而造成的环磷酸腺苷(cAMP)打开一个环核苷酸门控(CNG),非选择性阳离子通道,导致离子和离子,并随后钙涌入2+内流导致开口的Ca 2+活化的Cl 通道5,6。所得向外Cl 的磁通变得容易通过高细胞内氯吸收,有可能通过的Na + / K + / Cl 协同转运NKCC1中,通过稳定氯浓度保持CL / HCO3 换热器SLC4A1,也许更多的尚未确定运输6-8。

双极嗅觉神经元具有单一的,无支链的轴突直接投射到嗅球和树枝状延伸到上皮的表面和端部作为专门隔室,树枝状旋钮。从这个旋钮,10-30纤毛,其可以达到50-60微米的长度,发出入粘液覆盖的上皮表面9。规范化的信号转导级联的蛋白质主要定位于这些纤毛的膜。上皮的增加感官表面放大,以检测气味物质的能力。由于感觉神经元的密度,纤毛从相邻的树突旋钮延伸弄乱。这种交织的结果是从不同的神经元,表达不同类型的嗅觉受体,上皮的表面上的随机混合物纤毛。的检测和细胞睫状蛋白,只存在于感觉神经元的一个子集的ular分配,因此在冷冻切片困难。另外,这种蛋白质沿纤毛的精确定位是几乎不可能的,因为冷冻切片通常比纤毛的平均长度薄。

为了使在嗅觉神经元至今未鉴定的膜蛋白的纤毛本土化的调查中,我们优化的恩面对制剂技术,它允许蛋白定位于纤毛的详细分析。简言之,将小鼠处死并在头分割中线附近。鼻甲,鼻,和额叶骨骼被去除以暴露隔膜。用的衬里上皮嗅觉部隔膜通过切割所有连接到鼻腔松开。把隔膜变成培养皿充满林格氏液后,将上皮剥离UND转移到涂覆的玻璃载片。经过简短fixat离子一步,免疫组化方法可以如果操作尽可能轻柔,以免脆弱的组织损伤进行。我们证明在古典冷冻切片和中所描述的连接面制备比较两种不同的膜蛋白的染色在嗅觉纤毛可达到的分辨率。

Protocol

注:所有动物的程序都在查理特大学或诊所耶拿符合德国动物保护的法律,避免动物的任何不必要的痛苦处理。 1.准备解决方案和解剖职场解决方案注:在开始上皮剥离之前,请准备以下解决方案。 在解剖过程的解决方案: 制备林格氏液(pH7.4)中为140 mM氯化钠,5mM的氯化钾,10mM的HEPES,2mM的氯化钙 ,1mM的MgCl 2的,和10mM葡萄糖的浓?…

Representative Results

嗅觉上皮连接面制剂可以用于研究蛋白质的定位中的感觉神经元的纤毛,使蛋白质的详细调查,其定位是冷冻切片的分析后不清楚。这个问题可以例举在染色IRRE样蛋白2(Kirrel2)的健的情况下。 Kirrel2(也称为Neph3)是膜蛋白和功能的免疫球蛋白(Ig)超家族的同嗜粘附蛋白中的一员。它显示出在嗅觉系统中轴突引导的作用,并表达在嗅觉神经元的活性依赖性方式10的子集。 <p clas…

Discussion

The en face preparation technique described in this protocol provides a powerful tool for the detailed analysis of the olfactory system. So far, most studies characterizing the localization of signaling proteins use immunostainings of cryosections. They present a good overview of the olfactory epithelium, and protein expression in distinct cell types or regions can be easily identified. However, expression in olfactory cilia is sometimes hard to detect. Even if ciliary localization is obvious, cryosections offer…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft DFG (Exc257, SFB958).

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Spring scissors straight tip, multiple suppliers
Surgical scissors sharp and blunt end, multiple suppliers
Fine forceps curved tips, Dumont #7, multiple suppliers
Razor blade extra thin, multiple suppliers
Binocular with illumination multiple suppliers, Stemi 2000-C, Zeiss
Petri dish multiple suppliers
Liquid-blocker pen Science Services N71310
Polysine coated slides Thermo Scientific J2800AMNZ
Confocal microscope Leica Microsystems TCS SPE
primary antibody Goat anti-Kirrel2 R&D Systems AF2930 1:200
primary antibody Rabbit anti-mOR-EG Baumgart et al., 2014 1:200
secondary antibodies Life Technologies A21206, A11057 1:500
Mounting medium, ProLong Gold antifade reagent Life Technologies P36930
Paraformaldehyde Sigma 441244 toxic, work under fume hood

References

  1. Firestein, S. How the olfactory system makes sense of scents. Nature. 413 (6852), 211-218 (2001).
  2. Buck, L., Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 65 (1), 175-187 (1991).
  3. Wong, S. T., et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron. 27 (3), 487-497 (2000).
  4. Belluscio, L., Gold, G. H., Nemes, A., Axel, R. Mice deficient in G(olf) are anosmic. Neuron. 20 (1), 69-81 (1998).
  5. Brunet, L. J., Gold, G. H., Ngai, J. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron. 17 (4), 681-693 (1996).
  6. Reisert, J., Lai, J., Yau, K. W., Bradley, J. Mechanism of the excitatory Cl- response in mouse olfactory receptor neurons. Neuron. 45 (4), 553-561 (2005).
  7. Hengl, T., et al. Molecular components of signal amplification in olfactory sensory cilia. Proceedings of the National Academy of Sciences of the United States of America. 107 (13), 6052-6057 (2010).
  8. Smith, D. W., Thach, S., Marshall, E. L., Mendoza, M. G., Kleene, S. J. Mice lacking NKCC1 have normal olfactory sensitivity. Physiolog., & Behavior. 93 (1-2), 44-49 (2008).
  9. Menco, B. P. Ultrastructural aspects of olfactory signaling. Chemical Senses. 22 (3), 295-311 (1997).
  10. Serizawa, S., et al. A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell. 127 (5), 1057-1069 (2006).
  11. Baumgart, S., et al. Scaffolding by MUPP1 regulates odorant-mediated signaling in olfactory sensory neurons. Journal Of Cell Science. 127 (11), 2518-2527 (2014).
  12. Strotmann, J., Wanner, I., Krieger, J., Raming, K., Breer, H. Expression of odorant receptors in spatially restricted subsets of chemosensory neurones. Neuroreport. 3 (12), 1053-1056 (1992).
  13. Jenkins, P. M., McEwen, D. P., Martens, J. R. Olfactory cilia: linking sensory cilia function and human disease. Chemical Senses. 34 (5), 451-464 (2009).
  14. Tadenev, A. L., et al. Loss of Bardet-Biedl syndrome protein-8 (BBS8) perturbs olfactory function, protein localization, and axon targeting. Proceedings of the National Academy of Sciences of the United States of America. 108 (25), 10320-10325 (2011).

Play Video

Cite This Article
Oberland, S., Neuhaus, E. M. Whole Mount Labeling of Cilia in the Main Olfactory System of Mice. J. Vis. Exp. (94), e52299, doi:10.3791/52299 (2014).

View Video