Summary

Enregistrement Light-réponses évoquées dans les neurones post-synaptiques dans Dark-adaptés, Préparations rétine de la souris tranche en utilisant des techniques de patch clamp

Published: February 11, 2015
doi:

Summary

We will demonstrate how to prepare retinal slices from the mouse eye and record light responses in retinal neurons. The entire procedure is conducted in dark-adapted conditions.

Abstract

La rétine est la porte d'entrée du système visuel. Pour comprendre les mécanismes de traitement des signaux visuels, nous étudions les fonctions de réseau de neurones de la rétine. Neurones rétiniens dans le réseau comprennent de nombreux sous-types. Plus de 10 sous-types de cellules bipolaires, les cellules ganglionnaires, les cellules amacrines et ont été identifiés par des études morphologiques. Sous-types multiples de neurones rétiniens sont pensés pour coder des caractéristiques distinctes de signalisation visuelle, telles que le mouvement et la couleur, et de former de multiples voies neurales. Cependant, les rôles fonctionnels de chaque neurone en traitement du signal visuel sont pas pleinement compris. La méthode patch clamp est utile de répondre à cette question fondamentale. Ici, un protocole d'enregistrer les réponses synaptiques lumière évoqués dans les neurones de la rétine de souris en utilisant des enregistrements de patch clamp dans des conditions sombres adapté est fourni. Les yeux de souris sont adaptés à l'obscurité O / N, et les préparations de tranche de la rétine sont disséqués dans une pièce sombre en utilisant un éclairage infrarouge et les téléspectateurs. La lumière infrarouge ne est pasactiver photorécepteurs de la souris et préserve ainsi leur réactivité de lumière. Patch clamp est utilisé pour enregistrer les réponses de lumière évoquée dans les neurones de la rétine. Un colorant fluorescent est injecté pendant les enregistrements pour caractériser les sous-types morphologiques neuronales. Cette procédure permet de déterminer les fonctions physiologiques de chaque neurone dans la rétine de souris.

Introduction

The retina is one of the unique parts of the nervous system. As an accessible part of the brain, its synaptic architecture has been well characterized. In addition, the functions of this neural network can be examined with a physiological stimulus: light. If the retinal tissue is isolated in a dark room with appropriate procedures, neurons in the tissue will respond to light. This preparation has been used to study visual signal processing and elucidate various synaptic mechanisms and neural network functions, as well as disease mechanisms.

Light responses in retinal neurons have been recorded for decades. Early studies used sharp electrodes to make intracellular recordings from mudpuppy retinal neurons1. In the 1980s, the patch clamp technique was invented2, and soon became a popular method among vision researchers3,4. Single cell recordings from lower vertebrates, including mudpuppy and fish retinal neurons, were popular methods that contributed to the elucidation of visual signal processing mechanisms5,6.

After genetic mutation techniques were developed, the mouse retina became a more popular model for vision researchers7-9. The mammalian retina is more attractive than that of lower vertebrates because it is evolutionarily closer to the human retina, and there is an opportunity to use disease models. However, mouse retinal cells are small and fragile10, and making retinal preparations and conducting patch clamp recordings in a dark room is challenging. As technology has improved, diverse approaches have become available to study visual signaling mechanisms such as imaging studies11 and the electroretinogram (ERG)12. Nevertheless, single cell recording with the patch clamp method is still important because it is highly temporally and spatially sensitive compared to other methods. Therefore, we have continuously conducted patch clamp recordings and improved our methods to investigate visual signal processing in mouse retinal slice preparations13-15.

In this video tutorial, the protocols are presented with important tips. Good recordings can only be achieved with good preparation. Practicing animal dissection and building a sturdy patch clamp rig will enable most researchers to achieve successful recordings.

Protocol

Déclaration éthique: procédures impliquant des sujets animaux ont été approuvés par le Comité institutionnel de protection des animaux et l'utilisation (IACUC) à l'Université Wayne State. 1. Préparation de la solution expérimentale Préparer la solution de dissection 1 jour à 1 semaine avant l'expérience réelle. Utilisez une solution tampon HEPES pour la dissection de la rétine raison de sa capacité tampon forte à des températures inférieures 16…

Representative Results

Une préparation représentative de tranche est représenté sur la Figure 1. La préparation de la tranche se trouve dans une position droite, montrant photorécepteurs aux cellules ganglionnaires dans une surface plane, et aucun détachement du papier filtre. Si une tranche est incliné, seule une partie de la préparation est au point, ce qui rend difficile d'identifier une cellule appropriée pour le patch serrage. Pour les enregistrements, il est important de choisir un bon soma, qui a généra…

Discussion

Good recordings can only be achieved with good retinal preparations and well-designed patch clamp setups. Although all the steps described above are important, the discussion highlights some critical steps both for the dissection and recordings.

For dissection, two things are especially important: cooling and oxygenation. After enucleating the eye, quickly remove the front part of the eye in a dissecting chamber with oxygen-bubbled, cooled dissecting solution, and pour cold solution into the …

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH R01 EY020533, WSU Startup Fund, and RPB grants.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
mice (28-60 days old, male) Jackson laboratory C57BL/6J strain
Ames' medium powder Sigma A1420 excellent
Stereo microscope Nikon SMZ745 excellent
dissecting tool_forceps Dumont #4, #5, #55 excellent
dissecting tool_scissors Roboz RS-5605 excellent
dissecting tool_surgery knife Surgistar 7514 excellent
razor blade (for chopper) EMS 71970 excellent
chopper handmade
infrared viewer Night Owl Optics NOBG1 It shows bright view.  Focusing small objects is an issue.
infrared pocket scopes B.E. Meyers OWL Gen 3 NV pocketscope excellent view
puller Sutter P-1000 excellent.  Make consistent size pipettes.
dark box Pelican dark box excellent
patch clamp system Scientifica slice scope 2000 Excellent setup.  Most key components are included in one package.  Micromanipulators are excellent.
amplifier Molecular Devices multiclamp 700B Excellent and easy control.
acquiring software Molecular Devices pClamp software Excellent and easy control.
light source (LED) Cool LED pE-2 4 channel system Excellent
CCD camera Q-imaging Retiga 2000 Excellent
Faraday cage handmade

References

  1. Werblin, F. S., Dowling, J. E. Organization of the retina of the mudpuppy, Necturus maculosus II. Intracellular recording. J Neurophysiol. 32 (3), 339-355 (1969).
  2. Sakmann, B., Neher, E. Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol. 46, 455-472 (1984).
  3. Lukasiewicz, P., Werblin, F. A slowly inactivating potassium current truncates spike activity in ganglion cells of the tiger salamander retina. J Neurosci. 8 (12), 4470-4481 (1988).
  4. Kaneko, A., Tachibana, M. Effects of L-glutamate on the anomalous rectifier potassium current in horizontal cells of Carassius auratus retina. J Physiol. 358, 169-182 (1985).
  5. Kamermans, M., Werblin, F. GABA-mediated positive autofeedback loop controls horizontal cell kinetics in tiger salamander retina. J Neurosci. 12 (7), 2451-2463 (1992).
  6. Cook, P. B., McReynolds, J. S. Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nat Neurosci. 1 (8), 714-719 (1998).
  7. Pang, J. J., Gao, F., Wu , J. S. Light-evoked current responses in rod bipolar cells, cone depolarizing bipolar cells and AII amacrine cells in dark-adapted mouse retina. J Physiol. 558 (Pt. 558 (Pt 3), 897-912 (2004).
  8. Euler, T., Masland , R. H. Light-evoked responses of bipolar cells in a mammalian retina). J Neurophysiol. 83 (4), 1817-1829 (2000).
  9. Berntson, A., Taylor , W. R. Response characteristics and receptive field widths of on-bipolar cells in the mouse retina. J Physiol. 524 Pt. 524 (Pt 3), 879-889 (2000).
  10. Sterling, P., Smith, R. G. Design for a binary synapse. Neuron. 41 (3), 313-315 (2004).
  11. Borghuis, B. G., Marvin, J. S., Looger, L. L., Demb, J. B. Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina. J Neurosci. 33 (27), 10972-10985 (2013).
  12. Dowling, J. E., Sidman, R. L. Inherited retinal dystrophy in the rat. J Cell Biol. 14, 73-109 (1962).
  13. Eggers, E. D., Lukasiewicz, P. D. GABA(A), GABA(C) and glycine receptor-mediated inhibition differentially affects light-evoked signalling from mouse retinal rod bipolar cells. J Physiol. 572 (Pt 1), 215-225 (2006).
  14. Ichinose, T., Lukasiewicz, P. D. The mode of retinal presynaptic inhibition switches with light intensity). J Neurosci. 32 (13), 4360-4371 (2012).
  15. Ichinose, T., Fyk-Kolodziej, B., Cohn, J. Roles of ON cone bipolar cell subtypes in temporal coding in the mouse retina. J Neurosci. 34 (26), 8761-8771 (2014).
  16. Baicu, S. C., Taylor, M. J. Acid-base buffering in organ preservation solutions as a function of temperature: new parameters for comparing buffer capacity and efficiency. Cryobiology. 45 (1), 33-48 (2002).
  17. Ames, A., Nesbett, F. B. In vitro retina as an experimental model of the central nervous system. J Neurochem. 37 (4), 867-877 (1981).
  18. Haverkamp, S., et al. The primordial, blue-cone color system of the mouse retina. J Neurosci. 25 (22), 5438-5445 (2005).
  19. Wei, W., Elstrott, J., Feller, M. B. Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina. Nat Protoc. 5 (7), 1347-1352 (2010).
  20. Farre, C. G., M Bruggemann, A., Fertig, N. Ion channel screening – automated patch clamp on the rise. Drug discovery today. Technologies. 5 (1), e1-e34 (2008).

Play Video

Cite This Article
Hellmer, C. B., Ichinose, T. Recording Light-evoked Postsynaptic Responses in Neurons in Dark-adapted, Mouse Retinal Slice Preparations Using Patch Clamp Techniques. J. Vis. Exp. (96), e52422, doi:10.3791/52422 (2015).

View Video