Summary

En fisk-fodring Laboratory bioassay i vurdering af den Antipredatory aktivitet af sekundære metabolitter fra væv af marine organismer

Published: January 11, 2015
doi:

Summary

Dette bioassay anvender en model rovfisk til at vurdere forekomsten af ​​fodring-afskrækkende metabolitter fra økologiske ekstrakter af væv af marine organismer ved naturlige koncentrationer ved hjælp af en ernæringsmæssigt sammenlignelig fødevare matrix.

Abstract

Marine chemical ecology is a young discipline, having emerged from the collaboration of natural products chemists and marine ecologists in the 1980s with the goal of examining the ecological functions of secondary metabolites from the tissues of marine organisms. The result has been a progression of protocols that have increasingly refined the ecological relevance of the experimental approach. Here we present the most up-to-date version of a fish-feeding laboratory bioassay that enables investigators to assess the antipredatory activity of secondary metabolites from the tissues of marine organisms. Organic metabolites of all polarities are exhaustively extracted from the tissue of the target organism and reconstituted at natural concentrations in a nutritionally appropriate food matrix. Experimental food pellets are presented to a generalist predator in laboratory feeding assays to assess the antipredatory activity of the extract. The procedure described herein uses the bluehead, Thalassoma bifasciatum, to test the palatability of Caribbean marine invertebrates; however, the design may be readily adapted to other systems. Results obtained using this laboratory assay are an important prelude to field experiments that rely on the feeding responses of a full complement of potential predators. Additionally, this bioassay can be used to direct the isolation of feeding-deterrent metabolites through bioassay-guided fractionation. This feeding bioassay has advanced our understanding of the factors that control the distribution and abundance of marine invertebrates on Caribbean coral reefs and may inform investigations in diverse fields of inquiry, including pharmacology, biotechnology, and evolutionary ecology.

Introduction

Kemisk økologi udviklet gennem et samarbejde med kemikere og økologer. Mens underdisciplin af jordbaseret kemisk økologi har eksisteret i nogen tid, at af havets kemiske økologi er kun et par årtier gammel, men har givet vigtig indsigt i den evolutionære økologi og samfund struktur af marine organismer 1-8. Ved at udnytte de emergente teknologier af dykning og NMR-spektroskopi, økologiske kemikere hurtigt genereret et stort antal publikationer, der beskriver nye metabolitter fra bundlevende marine hvirvelløse dyr og alger i 1970'erne og 1980'erne 9. Antages det, at sekundære metabolitter skal tjene et formål, mange af disse publikationer tilskrives økologisk vigtige egenskaber til nye forbindelser uden empiriske beviser. På nogenlunde samme tid, blev økologer også drage fordel af fremkomsten af ​​dykning og beskrive fordelingerne og mængderne af bunddyr og planter tidligere kendte from relativt ineffektive prøvetagningsmetoder såsom uddybning. Antagelsen af disse forskere var, at noget siddende og blød og rørige skal kemisk forsvares at undgå forbrug af rovdyr 10. I et forsøg på at indføre empiri til, hvad der var ellers beskrivende arbejde arter mængderne, nogle økologer begyndte ekstrapolere kemiske forsvar fra toksicitet assays 11. De fleste toksicitet assays involverede eksponeringen af ​​hele fisk eller andre organismer til vandige suspensioner af rå organiske ekstrakter af hvirvelløse væv, med efterfølgende bestemmelse af tørvægt koncentrationer af ekstrakter, der er ansvarlige for at dræbe halvdelen af ​​assay organismer. Men toksicitet analyser ikke efterligne den måde, hvorpå potentielle rovdyr opfatter bytte under naturlige forhold, og efterfølgende undersøgelser har fundet nogen sammenhæng mellem toksicitet og velsmag 12-13. Det er overraskende, at publikationer i prestigefyldte tidsskrifter brugte teknikker, der har lidt eller ingen Ecological relevans 14-15, og at disse undersøgelser stadig er almindeligt citeret i dag. Det er endnu mere alarmerende at bemærke, at undersøgelser baseret på toksicitetsdata fortsat blive offentliggjort 16-18. Den heri beskrevne bioassay metode blev udviklet i slutningen af ​​1980'erne for at give et økologisk relevant tilgang til marine kemiske økologer at vurdere antipredatory kemiske forsvar. Metoden kræver en model rovdyr at prøve en rå organisk ekstrakt fra målorganismen på en naturlig koncentration i et ernæringsmæssigt sammenlignelig fødevare matrix, der giver smagen data, der er mere økologisk meningsfulde end toksicitetsdata.

Den generelle tilgang til vurdering af antipredatory aktivitet af væv marine organismer indeholder fire vigtige kriterier: (1) en passende generalist rovdyr skal anvendes i foder assays, (2) organiske metabolitter af alle polariteter skal være udtømmende udvindes af væv i målrette organisme, (3) metabolitterne skal be blandet ind i en ernæringsmæssigt egnet eksperimentel mad på samme volumetriske koncentration som findes i organismen, hvorfra de blev udvundet, og (4) den eksperimentelle design og statistiske metode skal give en meningsfuld måling for at angive relative distastefulness.

Proceduren beskrevet nedenfor er designet specielt til at vurdere antipredatory kemiske forsvar i Caribien marine hvirvelløse dyr. Vi anvender den bluehead wrasse, Thalassoma bifasciatum, som model rovfisk, fordi denne art er almindelig på caribiske koralrev og er kendt for at prøve et bredt sortiment af bunddyr 19. Væv fra målet organismen først udvindes, derefter kombineret med en fødevare blanding, og endelig tilbydes til grupper af T. bifasciatum at observere, om de forkaster ekstrakt-behandlede fødevarer. Assay data ved hjælp af denne metode har givet vigtig indsigt i den defensive kemi af marine organismer 12,20-21, lIFE historie afvejninger 22-24 og samfund økologi 25-26.

Protocol

BEMÆRK: Trin 3 i denne protokol indebærer hvirveldyr emner. Proceduren er udformet således, at dyrene får den mest human behandling mulig og er blevet godkendt af Institutional Animal Care og brug Udvalg (IACUC) ved University of North Carolina Wilmington. 1) Tissue Extraction Brug væv, der er i sin naturlige tilstand af hydrering og ikke klemt, udtørrede eller overdrevent våd, da dette vil ændre den volumetriske koncentration af sekundære metabolitter. Skære eller hakke…

Representative Results

Her rapporterer vi resultaterne af denne bioassay for seks arter af fælles Caribbean svampe (figur 2). Disse data blev oprindeligt udgivet i 1995 af Pawlik et al. 12 og demonstrere kraften i denne tilgang til at kortlægge forskelle i kemiske forsvarsstrategier blandt co-forekommende systematiske enheder. Resultaterne blev rapporteret som en gennemsnitlig antal foderpiller spist + standardafvigelse (SE) for hver art. Næsten ingen pellets blev spist i assays med rå organiske ekstra…

Discussion

Den heri beskrevne fremgangsmåde tilvejebringer en relativt enkel, økologisk relevant laboratorieprotokol for vurderingen antipredatory kemiske forsvar i marine organismer. Her gennemgår vi de vigtige kriterier, som er opfyldt med dette sæt af metoder:

(1) Passende rovdyr. Dette fodring assay anvender bluehead wrasse, Thalassoma bifasciatum, en af de mest udbredte fisk på koralrev i hele Caribien. Den bluehead er en generalist kødædende kendt for at prøve et bredt s…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank James Maeda and Aaron Cooke for assistance with the filming and editing of this video. Funding was provided by the National Science Foundation (OCE-0550468, 1029515).

Materials

Dichloromethane Fisher Scientific D37-20
Methanol Fisher Scientific A41220
Anhydrous Calcium Chloride Fisher Scientific C614-500
Cryocool Heat Transfer Fluid Fisher Scientific 20-548-146 For vacuum concentrator
Alginic Acid Sodium Salt High Viscosity MP Biomedicals 154723
Squid mantle rings N/A N/A Can be purchased at grocery store
Denatonium benzoate Aldrich D5765
50 ml graduated centrifuge tube Fisher Scientific 14-432-22
20 ml scintillation vial Fisher Scientific 03-337-7
Disposable Pasteur pipets Fisher Scientific 13-678-20D
Rubber bulbs for Pasteur pipets Fisher Scientific 03-448-24
Red bulbs for pellet delivery Fisher Scientific 03-448-27
250 ml round-bottom flask Fisher Scientific 10-067E
Scintillation vial adapter for rotavap Fisher Scientific K747130-1324
Weightboats Fisher Scientific 02-202B
Microspatula Fisher Scientific 21-401-10
5 ml graduated syringe Fisher Scientific 14-817-53
10 ml graduated syringe Fisher Scientific 14-817-54
Razor blade Fisher Scientific S17302

References

  1. Paul, V. J., ed, . Ecological roles of marine natural products. , (1992).
  2. Pawlik, J. R. Marine invertebrate chemical defenses. Chemical Reviews. 93 (5), 1911 (1993).
  3. Hay, M. E. Marine chemical ecology: what's known and what's next. Journal of Experimental Marine Biology and Ecology. 44 (5), 476-476 (1996).
  4. McClintock, J. B., Baker, B. J. . Marine Chemical Ecology. , (2001).
  5. Amsler, C. D. . Algal Chemical Ecology. , (2008).
  6. Hay, M. E. Marine chemical ecology: Chemical signals and cues structure marine populations, communities, and ecosystems. Annual Review of Marine Science. 1, 193-212 (2009).
  7. Pawlik, J. R. The chemical ecology of sponges on Caribbean reefs: Natural products shape natural systems. BioScience. 61 (11), 888 (2011).
  8. Pawlik, J. R. Antipredatory Defensive Roles of Natural Products from Marine Invertebrates. Handbook of Marine Natural Products. , 677-710 (2012).
  9. Pawlik, J. R., Amsler, C. D., Ritson-Williams, R., McClintock, J. B., Baker, B. J., Paul, V. J. Marine Chemical Ecology: A Science Born of Scuba. . Research and Discoveries: The Revolution of Science through Scuba. 39, 53-69 (2013).
  10. Randall, J. E., Hartman, W. D. Sponge-feeding fishes of the West Indies. Marine Biology. 1, 216-225 (1968).
  11. Bakus, G. J., Green, G. Toxicity in sponges and holothurians — geographic pattern. Science. 185, 951-953 (1974).
  12. Pawlik, J. R., Chanas, B., Toonen, R. J., Fenical, W. Defenses of Caribbean sponges against predatory reef fish. 1. Chemical deterrency. Marine Ecology Progress Series. 127, 183-194 (1995).
  13. Schulte, B. A., Bakus, G. J. Predation deterrence in marine sponges — laboratory versus field studies. Bulletin of Marine Science. 50, 205-211 (1992).
  14. Jackson, J. B. C., Buss, L. Allelopathy and spatial competition among coral reef invertebrates. Proceedings of the National Academy of Sciences. 72, 5160-5163 (1975).
  15. Bakus, G. J. Chemical defense mechanisms on the great barrier reef. Australia. Science. 211, 497-499 (1981).
  16. Gemballa, S., Schermutzki, F. Cytotoxic haplosclerid sponges preferred: a field study on the diet of the dotted sea slug Peltodoris atromaculata (doridoidea: nudibranchia). Marine Biology. 144, 1213-1222 (2004).
  17. Voogd, N. J., Cleary, D. F. R. Relating species traits to environmental variables in Indonesian coral reef sponge assemblages. Marine and Freshwater Research. 58, 240-249 (2007).
  18. Mollo, E., et al. Factors promoting marine invasions: a chemolecological approach. Proceedings of the National Academy of Sciences. 105, 4582-4586 (2008).
  19. Randall, J. E. Food habits of reef fishes of the West Indies. Studies in Tropical Oceanography. 5, 665-847 (1967).
  20. O’Neal, W., Pawlik, J. R. A reappraisal of the chemical and physical defenses of Caribbean gorgonian corals against predatory fishes. Marine Ecology Progress Series. 240, 117-126 (2002).
  21. Hines, D. E., Pawlik, J. R. Assessing the antipredatory defensive strategies of Caribbean non-scleractinian zoantharians (Cnidaria): is the sting the only thing. Marine Biology. 159 (2), 389-398 (2012).
  22. Walters, K. D., Pawlik, J. R. Is there a trade-off between wound-healing and chemical defenses among Caribbean reef sponges. Integrative and Comparative Biology. 45 (2), 352-358 (2005).
  23. Leong, W., Pawlik, J. R. Evidence of a resource trade-off between growth and chemical defenses among Caribbean coral reef sponges. Marine Ecology Progress Series. 406, 71-78 (2010).
  24. Leong, W., Pawlik, J. R. Comparison of reproductive patterns among 7 Caribbean sponge species does not reveal a resource trade-off with chemical defenses. Journal of Experimental Marine Biology and Ecology. 401 (1-2), 80-84 (2011).
  25. Pawlik, J. R., Loh, T. -. L., McMurray, S. E., Finelli, C. M. Sponge Communities on Caribbean Coral Reefs Are Structured by Factors That Are Top-Down, Not Bottom-Up. PLoS ONE. 8 (5), e62573 (2013).
  26. Loh, T. -. L., Pawlik, J. R. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proceedings of the National Academy of Science. 111, 4151-4156 (2014).
  27. Miller, A. M., Pawlik, J. R. Do coral reef fish learn to avoid unpalatable prey using visual cues. Animal Behaviour. 85, 339-347 (2013).
  28. Pawlik, J. R., Fenical, W. A re-evaluation of the ichthyodeterrent role of prostaglandins in the Caribbean gorgonian coral, Plexaura homomalla. Marine Ecology Progress Series. 52, 95-98 (1989).
  29. Fenical, W., Pawlik, J. R. Defensive properties of secondary metabolites from the Caribbean gorgonian coral Erythropodium caribaeorum. Marine Ecology Progress Series. 75, 1-8 (1991).
  30. Pawlik, J. R., Fenical, W. Chemical defense of Pterogorgia anceps, a Caribbean gorgonian coral. Marine Ecology Progress Series. 87, 183-188 (1992).
  31. Chanas, B., Pawlik, J. R. Does the skeleton of a sponge provide a defense against predatory reef fish. Oecologia. 107 (2), 225-231 (1996).
  32. Chanas, B., Pawlik, J. R., Lindel, T., Fenical, W. Chemical defense of the Caribbean sponge Agelas clathrodes (Schmidt). Journal of Experimental Marine Biology and Ecology. 208 (1-2), 185-196 (1997).
  33. Wilson, D. M., Puyana, M., Fenical, W., Pawlik, J. R. Chemical defense of the Caribbean reef sponge Axinella corrugata against predatory fishes. Journal of Chemical Ecology. 25 (12), 2811-2823 (1999).
  34. Chanas, B., Pawlik, J. R. Defenses of Caribbean sponges against predatory reef fish II. Spicules, tissue toughness, and nutritional quality. Marine Ecology Progress Series. 127 (1), 195-211 (1995).
  35. Albrizio, S., Ciminiello, P., Fattorusso, E., Magno, S., Pawlik, J. R. Amphitoxin, a new high molecular weight antifeedant pyridinium salt from the Caribbean sponge Amphimedon compressa. Journal of Natural Products. 58 (5), 647-652 (1995).
  36. Assmann, M., Lichte, E., Pawlik, J. R., Köck, M. . Chemical defenses of the Caribbean sponges Agelas wiedenmayeri and Agelas conifera. Marine Ecology Progress Series. 207, 255-262 (2000).
  37. Kubanek, J., Fenical, W., Pawlik, J. R. New antifeedant triterpene glycosides from the Caribbean sponge Erylus Formosus. Natural Product Letters. 15 (4), 275-285 (2001).
  38. Pawlik, J. R., McFall, G., Zea, S. Does the odor from sponges of the genus Ircinia protect them from fish predators. Journal of Chemical Ecology. 28 (6), 1103-1115 (2002).
  39. Waddell, B., Pawlik, J. R. Defenses of Caribbean sponges against invertebrate predators. I. Assays with hermit crabs. Marine Ecology Progress Series. 195, 125-132 (2000).
  40. Waddell, B., Pawlik, J. R. Defense of Caribbean sponges against invertebrate predators. II. Assays with sea stars. Marine Ecology Progress Series. 195, 133-144 (2000).
  41. Burns, E., Ifrach, I., Carmeli, S., Pawlik, J. R., Ilan, M. Comparison of anti-predatory defenses of Red Sea and Caribbean sponges. I. Chemical defense. Marine Ecology Progress Series. 252, 105-114 (2003).
  42. Jones, A. C., Blum, J. E., Pawlik, J. R. Testing for defensive synergy in Caribbean sponges: Bad taste or glass spicules. Journal of Experimental Marine Biology and Ecology. 322 (1), 67 (2005).
check_url/kr/52429?article_type=t

Play Video

Cite This Article
Marty, M. J., Pawlik, J. R. A Fish-feeding Laboratory Bioassay to Assess the Antipredatory Activity of Secondary Metabolites from the Tissues of Marine Organisms. J. Vis. Exp. (95), e52429, doi:10.3791/52429 (2015).

View Video