Summary

Mønster via Optiske mettes Transitions - Fabrikasjon og karakterisering

Published: December 11, 2014
doi:

Summary

We report that the diffraction limit of conventional optical lithography can be overcome by exploiting the transitions of organic photochromic derivatives induced by their photoisomerization at low light intensities.1-3 This paper outlines our fabrication technique and two locking mechanisms, namely: dissolution of one photoisomer and electrochemical oxidation.

Abstract

This protocol describes the fabrication and characterization of nanostructures using a novel nanolithographic technique called Patterning via Optical Saturable Transitions (POST). In this technique the chemical properties of organic photochromic molecules that undergo single-photon reactions are exploited, enabling rapid top-down nanopatterning over large areas at low light intensities, thereby, allowing for the circumvention of the far-field diffraction barrier.4 Simple, cost-effective, high throughput and resolution alternatives to nanopatterning are being explored, such as, two-photon polymerization5,6, beam pen lithography (BPL)7, scanning electron beam lithography (SEBL), and focused ion beam (FIB) patterning. However, multi-photon approaches require high light intensities, which limit their potential for high throughput and offer low image contrast. Although, electron and ion beam lithographic processes offer increased resolution, the serial nature of the process is limited to slow writing speeds, which also prevents patterning of features over large areas. Beam-pen lithography is an approach towards parallel near-field optical lithography. However, the gap between the source of the beam and the surface of the photoresist needs to be controlled extremely precisely for good pattern uniformity and this is very challenging to accomplish for large arrays of beams. Patterning via Optical Saturable Transitions (POST) is an alternative optical nanopatterning technique for patterning sub-wavelength features1-3. Since this technique uses single photons instead of electrons, it is extremely fast and does not require high light intensities1-3, opening the door to massive parallelization.

Introduction

Optisk litografi er av sentral betydning i fabrikasjon av nanoskala strukturer og enheter. Økte fremskritt i romanen litografi teknikker har evnen til å aktivere nye generasjoner av nye enheter. 8-11 i denne artikkelen, en anmeldelse er presentert av en klasse av optiske litografiske teknikker som oppnår dyp sub-bølgelengde oppløsning ved hjelp av nye photoswitchable molekyler. Denne tilnærmingen kalles Mønstring via optisk-mettes Transitions (POST). 1-3

POST er en ny teknikk som nanofabrication unikt kombinerer ideene til metting optiske overganger av fotokromatiske molekyler, spesielt (1,2-bis (5,5'-dimetyl-2,2'-bithiophen-yl)) perfluorocyclopent-1-en. Colloquially er denne forbindelsen refereres til som BTE, figur 1, slik som de som brukes i stimulert emisjon-uttømming (STED) mikroskopi 12, med forstyrrelser litografi, noe som gjør det til et kraftig verktøy for large-område parallelt nanopatterning av dype Subwavelength funksjoner på en rekke ulike overflater med potensiell forlengelse til 2- og 3-dimensjoner.

Fotokromatet laget er opprinnelig i en homogen stat. Når dette lag er utsatt for en jevn belysning av λ 1, konverterer det til den andre isomer tilstand (1c), Figur 2. Deretter ble prøven blir utsatt for en fokusert node ved λ 2, som omdanner prøven inn i den første isomer tilstand ( 1o) overalt unntatt i umiddelbar nærhet av noden. Under styreeksponeringsdosen, kan størrelsen av uomdannet region gjøres vilkårlig små. En etterfølgende fikseringstrinn av en av isomerene kan selektivt og irreversibelt omdannet (låses) i en 3 rd tilstand (sort) for å låse mønster. Deretter blir sjiktet eksponeres jevnt til λ 1, som omdanner alt bortsett fra den låste region tilbake til den opprinnelige tilstand. Denrekkefølge av trinn kan bli gjentatt med en forskyvning av prøven i forhold til optikken, som resulterer i to låste regioner som avstanden er mindre enn fjernfelts diffraksjonsgrensen. Derfor kan en vilkårlig geometri være mønstret i en "dot-matrix" fashion. 1-3

Protocol

MERK: utføre alle de følgende trinnene under renrom klasse 100 forhold eller bedre. 1. Prøvepreparering Rengjøre en 2 "diameter silisium wafer med bufret Oxide Etch (BOE) løsning (6 deler 40% NH 4 F og en del 49% HF) for 2 min (OBS: Farlige kjemikalier). Velge denne etse tid for å fjerne eventuelle organiske bestanddeler eller forurensninger på overflaten. Skyll med deionisert (DI) vann i ca. 5 min. Tørr wafer med tørr N2. MERK: Arbeid aldri …

Representative Results

Fabrikkert prøver: Forskjellige oksidasjons ganger ble karakterisert som illustrert ved atomstyrkemikrografer i figur 3 ved en oksidasjonsspenning på 0,85 V bestemmes ut fra syklisk voltammetri. De 50 nm tykke filmer ble utsatt for en stående bølge ved λ = 647 nm av perioden 400 nm i 60 sekunder ved en strømtetthet på 0,95 mW / cm2. Ettersom oxidation tiden økes fra 10 min til 25 min, kan man tydelig se et tap av kontrast som noen av de om…

Discussion

The fabrication, experimental setup and related operational procedures of Patterning via Optical Saturable Transitions (POST) have been described. By exploiting the linear switching properties of thermally stable photochromic molecules, POST offers new perspectives on circumventing the far-field diffraction limit.1-2,4

Previously long-term storage requirement of the samples was solved by storing the samples under N2, directly after the initial evaporation.2 How…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Thanks to Michael Knutson, Paul Hamric, Greg Scott, and Chris Landes for helpful discussions and assistance related to the custom inert atmosphere sample holder and assistance in the University of Utah student machine shop. P.C. acknowledges the NSF GRFP under Grant No. 0750758. P.C. acknowledges the University of Utah Nanotechnology Training Fellowship. R.M. acknowledges a NSF CAREER Award No. 1054899 and funding from the USTAR Initiative.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Isopropanol Fisher Scientific P/7500/15 CAUTION: flammable, use good
ventilation and avoid all ignition
sources.
Buffered Oxide Etch
Methanol Ricca Chemical 48-293-2  CAUTION: flammable, use good
ventilation and avoid all ignition
sources.
Ethylene Glycol Sigma-Aldrich 324558 CAUTION: Harmful if swallowed
Silicon wafer
Diamond Scribe
Glass Beakers
Tweezers Ted Pella 5226
Reactive Ion Etching System Oxford Plasma Lab 80 Plus
Inert Atmosphere Sample Holder Proprietary In-house Designed
Polarizing beamsplitter cube Thorlabs PBS052
HeNe Laser Melles Griot 25-LHP-171 CAUTION: Wear safety glasses
Half-wave plates Thorlabs WPH05M-633
Thermal Evaporator Proprietary In-house Designed
TMV Super TM Vacuum Products TMV Super
Voltammograph Bioanalytical Systems CV-37
Shortwave UV lamp 365nm UVP Analytik Jena Company UVGL-25 CAUTION: Wear UV safety glasses

References

  1. Brimhall, N., Andrew, T. L., Manthena, R. V., Menon, R. Breaking the far-field diffraction limit in optical nanopatterning via repeated photochemical and electrochemical transitions in photochromic molecules. Physical Review Letters. 107 (20), 205501 (2011).
  2. Cantu, P., et al. Subwavelength nanopatterning of photochromic diaryethene films. Applied Physics Letters. 100 (18), 183103 (2012).
  3. Cantu, P., Andrew, T. L., Menon, R. Nanopatterning of diarylethene films via selective dissolution of one photoisomer. Applied Physics Letters. 103 (17), 173112 (2013).
  4. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie. 9 (1), 413-418 (1873).
  5. Li, L., et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science. 324 (5929), 910-913 (2009).
  6. Fischer, J., von Freymann, G., Wegener, M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Advanced Materials. 22 (32), 3578-3582 (2010).
  7. Mirkin, C. A., et al. Beam pen lithography. Nature Nanotechnology. 5, 637-640 (2010).
  8. Xie, X., et al. Manipulating spatial light fields for micro- and nano-photonics. Physica E: Low-dimensional Systems and Nanostructures. 44, 1109-1126 (2012).
  9. Leroy, J., et al. High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes. Applied Physics Letters. 100 (21), 213507 (2012).
  10. Carr, D., Sekaric, L., Craighead, H. Measurement of nanomechanical resonant structures in single-crystal silicon. Journal of Vacuum Science & Technology B. 16 (6), 3821-3824 (1998).
  11. Wilhelmi, O., et al. Rapid prototyping of nanostructured materials with a focused ion beam. Japanese Journal of Applied Physics. 47 (6), 2010-5014 (2008).
  12. Hell, S. W. Far-field optical nanoscopy. Science. 316 (5828), 1153-1158 (2007).
  13. Chou, S. Y., Krauss, P. R., Renstrom, P. J. Nanoimprint lithography. Journal of Vacuum Science & Technology B. 14, 4129 (1996).
  14. Guillemette, M. D., et al. Surface topography induces 3D self-orientation of cells and extracellular matrix resulting in improved tissue function. Integrative Biology. 1 (2), 196-204 (2009).
check_url/kr/52449?article_type=t

Play Video

Cite This Article
Cantu, P., Andrew, T. L., Menon, R. Patterning via Optical Saturable Transitions – Fabrication and Characterization. J. Vis. Exp. (94), e52449, doi:10.3791/52449 (2014).

View Video