Summary

隔膜的神经支配膈运动神经元的功能和形态评估

Published: May 25, 2015
doi:

Summary

Compound muscle action potential recording quantitatively assesses functional diaphragm innervation by phrenic motor neurons. Whole-mount diaphragm immunohistochemistry assesses morphological innervation at individual neuromuscular junctions. The goal of this protocol is to demonstrate how these two powerful methodologies can be used in various rodent models of spinal cord disease.

Abstract

This protocol specifically focuses on tools for assessing phrenic motor neuron (PhMN) innervation of the diaphragm at both the electrophysiological and morphological levels. Compound muscle action potential (CMAP) recording following phrenic nerve stimulation can be used to quantitatively assess functional diaphragm innervation by PhMNs of the cervical spinal cord in vivo in anesthetized rats and mice. Because CMAPs represent simultaneous recording of all myofibers of the whole hemi-diaphragm, it is useful to also examine the phenotypes of individual motor axons and myofibers at the diaphragm NMJ in order to track disease- and therapy-relevant morphological changes such as partial and complete denervation, regenerative sprouting and reinnervation. This can be accomplished via whole-mount immunohistochemistry (IHC) of the diaphragm, followed by detailed morphological assessment of individual NMJs throughout the muscle. Combining CMAPs and NMJ analysis provides a powerful approach for quantitatively studying diaphragmatic innervation in rodent models of CNS and PNS disease.

Introduction

肌萎缩性侧索硬化症(ALS)是与两个上和下运动神经元和随后的肌肉麻痹的损失相关联的衰弱运动神经元疾病。经诊断,病人的生存是唯一的2-5年平均1。膈运动神经元(PhMN)损失是ALS发病机制的一个重要组成部分。患者最终死于PhMN支配膈肌,灵感2,3的主要肌肉损失。外伤性脊髓损伤(SCI)也与相关联的呼吸困难的严重问题。每年4约12,000 SCI新病例发生是由于脊髓损伤创伤。尽管相对于位置,类型和严重程度的异质性疾病,多数SCI案件涉及外伤的脊髓型颈椎病,其结果往往是虚弱和持续性呼吸道妥协。除了ALS和脊髓损伤,其他中枢神经系统(CNS)的疾病可以关联瓦特第i膈肌呼吸功能障碍5,6。

膈神经是传出运动神经支配是同侧半隔膜和源自位于同侧颈脊髓的C3-C5水平PhMN细胞体。 PhMN输出由在称为延髓腹侧呼吸组(rVRG)7的区域降序从脑干bulbospinal输入控制。所述rVRG-PhMN隔膜电路是中央的吸气呼吸,以及其他非通气隔膜行为的控制。各种外伤和神经退行性疾病,影响该电路可导致呼吸功能及患者的生活质量产生深远的下降。下行输入从rVRG,PhMN生存,膈神经的完整性和适当神经支配的肌肉隔膜接头(NMJ)PhMNs都是必要的正常功能隔膜。它采用的技术,因此重要的是,可以定量地评价本电路在体内在ALS,脊髓损伤等中枢神经系统疾病的啮齿动物模型。

与此协议中,目标是描述实验工具用于评估在两个电生理学和形态学水平膜片PhMN支配。复合肌肉动作电位(的CMap)通过刺激一个给定的运动神经的所有传出的运动神经元的轴突,然后分析所述目标肌纤维的诱发的去极化应答被记录。此技术可用于在体内麻醉大鼠和小鼠的量化半膈由PhMNs 8的官能支配。由于这样的事实,的CMap表示同时记录所有(或至少许多/大部分)的整个半膈,它也检查个别运动轴突和肌纤维在膜片NMJ的表型,以便跟踪疾病是有用的肌纤维 – 和治疗相关的形态变化,如局部和完井德失神经支配,再生出芽及神经再支配。这可以通过在隔膜的整个贴装免疫组织化学(IHC)来完成,接着个体NMJs的详细的形态学评估整个肌肉9。结合的CMap和NMJ分析提供了一个强大的方法定量研究膈神经支配的中枢神经系统和PNS疾病的啮齿动物模型。

Protocol

实验程序批准的托马斯·杰斐逊大学制度的动物护理和使用委员会,并符合欧洲共同体理事会指令(2010年/ 63 / EU,六百○九分之八十六/ EEC和87-848 / EEC),美国国立卫生研究院指南传导关心和使用实验动物,以及神经科学学会的在神经科学研究中使用动物的政策。 1.复合肌肉动作电位(的CMap) 准备的动物: 麻醉使用吸入剂(异氟烷)在1-2%递送到作用或通过注…

Representative Results

成年SD大鼠接受椎板切除术或者只(无恙的控制),或单侧半挫伤SCI在C4脊髓水平10-12。在5周后,手术,峰CMAP波幅记录从半膈同侧椎板/损伤部位中的SCI大鼠( 图2C)中的显著减少相比椎板仅控制( 图2B)。在半膈所有NMJs均在控制未患病的野生型大鼠( 图4A中的C)完全不变。与此相反,SOD1 G93A大鼠(ALS的啮齿动物模型)显示显著病理学在半膈N…

Discussion

由于呼吸功能受到损害双方在外伤性脊髓损伤和ALS,开发针对呼吸和具体隔膜神经支配疗法是临床相关5,6。为了全面考察呼吸功能,应使用相结合的办法方法。的CMap测量膜片由外部膈神经的刺激方式的功能性神经支配的程度,但不是内源bulbospinal呼吸驱动8。此外,这些录音不允许检查在NMJ形态变化,特别是在个人的运动轴突和突触后乙酰胆碱受体的水平。通过使用所描述的染色?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the NINDS (grant #1R01NS079702 to A.C.L.) and the SURP Program at Thomas Jefferson University (M.M.).

Materials

Paraformaldehyde Fisher T353-500 Make 10% solution first in de-ionized distilled water; make 4% with 1X PBS, adjust pH to 7.4
1X Phosphate Buffered Saline, pH 7.4 Invitrogen 10010049
2% Bovine serum albumin (2% BSA) Sigma-Aldrich A3059-100g Dissolve 2g BSA into 100mL of 1X PBS
0.2% Triton X100 in 2% BSA/PBS (Blocking Buffer) Sigma-Aldrich T9284-100mL Dissolve 0.2ml/100mL 2% BSA/PBS
0.1M Glycine Sigma-Aldrich G-7126 Add 0.185g to 25mL of 2% BSA/PBS
α-bungarotoxin Invitrogen T1175 Concentration 1:400
SMI-312  Sternberger Monoclonals SMI312 Concentration 1:1,000
SV2 Developmental Studies Hybridoma Bank SV2-Supernatant Concentration 1:10
FITC goat anti-mouse IgG1 Roche 3117731001 Concentration 1:100
Silicone rubber Sylgard, Dow Corning Part # 184 Follow instructions that come with kit: can use multiple sized culture dish (30mm, 60mm, 100mm) depending on needs
Vectashield fluorescent mounting medium Vector laboratories H-1000 This is not a hard-set medium. You will need to secure the cover slip with clear nail polish.
Small Spring Scissors Fine Science Tools 15002-08
Dissection forceps Fine Science Tools 11295-51
Software for CMAP recordings Scope 3.5.6; ADI
Disk surface electrodes Natus neurology 019-409000
Subdermal needle electrodes Natus neurology 019-453100
Conductive gel Aquasonic  122-73720
Stimulator/recording system for CMAP recordings ADI Powerlab 8SP stimulator 
Amplifier for CMAP recordings BioAMP

References

  1. Miller, R. G., et al. Practice parameter: the care of the patient with amyotrophic lateral sclerosis (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology: ALS Practice Parameters Task Force. Neurology. 52, 1311-1323 (1999).
  2. Sandhu, M. S., et al. Respiratory recovery following high cervical hemisection. Respir Physiol Neurobiol. 169, 94-101 (2009).
  3. Kaplan, L. M., Hollander, D. Respiratory dysfunction in amyotrophic lateral sclerosis. Clin Chest Med. 15, 675-681 (1994).
  4. Holtz, A., Levi, R. . Spinal Cord Injury. , (2010).
  5. Bruijn, L. I., et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron. 18, 327-338 (1997).
  6. Sharma, H., Alilain, W. J., Sahdu, A., Silver, J. Treatments to restore respiratory function after spinal cord injury and their implications for regeneration, plasticity and adaptation. Experimental Neurology. 235, 18-25 (2012).
  7. Gourévitch, B., Mellen, N. The preBötzinger complex as a hub for network activity along the ventral respiratory column in the neonate rat. Neuroimage. 98, 460-474 (2014).
  8. Strakowski, J. A., Pease, W. S., Johnson, E. W. Phrenic nerve stimulation in the evaluation of ventilator-dependent individuals with C4- and C5-level spinal cord injury. Am J Phys Med Rehabil. 86, 153-157 (2007).
  9. Wright, M. C., et al. Distinct muscarinic acetylcholine receptor subtypes contribute to stability and growth, but not compensatory plasticity, of neuromuscular synapses. J Neurosci. 29, 14942-14955 (2009).
  10. Li, K., et al. Overexpression of the astrocyte glutamate transporter GLT1 exacerbates phrenic motor neuron degeneration, diaphragm compromise, and forelimb motor dysfunction following cervical contusion spinal cord injury. J Neurosci. 34, 7622-7638 (2014).
  11. Nicaise, C., et al. Early phrenic motor neuron loss and transient respiratory abnormalities after unilateral cervical spinal cord contusion. Journal of neurotrauma. 30, 1092-1099 (2013).
  12. Nicaise, C., et al. Phrenic motor neuron degeneration compromises phrenic axonal circuitry and diaphragm activity in a unilateral cervical contusion model of spinal cord injury. Exp Neurol. 235, 539-552 (2012).
  13. Lepore, A. C., et al. Peripheral hyperstimulation alters site of disease onset and course in SOD1 rats. Neurobiol Dis. 39, 252-264 (2010).
  14. Alilain, W. J., Horn, K. P., Hu, H., Dick, T. E., Silver, J. Functional regeneration of respiratory pathways after spinal cord injury. Nature. 475, 196-200 (2011).
  15. Zhang, B. M. F., Cummings, K. J., Frappell, P. B., Wilson, R. J. Novel method for conscious airway resistance and ventilation estimation in neonatal rodents using plethysmography and a mechanical lung. Respir Physiol Neurobiol. 201, 75-83 (2014).
  16. Ngo, S. T., Bellingham, M. C. Neurophysiological recording of the compound muscle action potential for motor unit number estimation in mice. Neuromethods. 78, 225-235 (2013).
  17. Nicaise, C., et al. Degeneration of phrenic motor neurons induces long-term diaphragm deficits following mid-cervical spinal contusion in mice. Journal of neurotrauma. 29, 2748-2760 (2012).
  18. Lepore, A. C., et al. Human glial-restricted progenitor transplantation into cervical spinal cord of the SOD1G93A mouse model of ALS. PLoS One. 6, (2011).
  19. Lepore, A. C., et al. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nature neuroscience. 11, 1294-1301 (2008).

Play Video

Cite This Article
Martin, M., Li, K., Wright, M. C., Lepore, A. C. Functional and Morphological Assessment of Diaphragm Innervation by Phrenic Motor Neurons. J. Vis. Exp. (99), e52605, doi:10.3791/52605 (2015).

View Video