Summary

Synchronisation<em> Caulobacter crescentus</em> Für die Untersuchung der Bakterienzellzyklus

Published: April 08, 2015
doi:

Summary

Synchronization of bacterial cells is essential for studies of the bacterial cell cycle and development. Caulobacter crescentus is synchronizable through density centrifugation allowing a rapid and powerful tool for studies of the bacterial cell cycle. Here we provide a detailed protocol for the synchronization of Caulobacter cells.

Abstract

The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle.

Introduction

Die bakterielle Zellzyklus steuert sowohl die Replikation des Genoms und die Teilung der Tochterzellen. Wichtig ist, wie Antibiotika-Resistenz ist eine wachsende Bedrohung der öffentlichen Gesundheit stellt der bakteriellen Zellzyklus eine ungenutzte Ziel für Antibiotika-Entwicklung.

In dem Bakterium Caulobacter crescentus, führt jede Zellzyklus in einer asymmetrischen Teilung, wodurch zwei Tochterzellen unterschiedlicher Schicksal (1A) 1,2. Eine Tochterzelle erbt eine Geißel und ist beweglich, während die andere Tochter erbt einen Stiel und sitzend. Eine integrierte genetische Schaltung steuert Zellzyklus und Zellschicksal von Transkriptionsregulation, Phospho-Signalisierung und regulierte Proteolyse 3. Zusätzlich Chromosomenreplikation und gleichzeitige Trennung Ausbeute Tochterzellen, die genau eine Kopie des Chromosoms 4 enthalten. Wichtig ist, dass diese beiden Zelltypen schnell durch collo getrennt werdenidal Silicateilchen Dichtezentrifugation im synchronisierbar NA1000 Stamm 5-7 ermöglicht die Isolierung der swarmer Zellen aus dem Rest der Population mit hohen Ausbeuten (1B). Isoliert swarmer Zellen dann synchron gehen durch asymmetrische Zellteilung. Hier haben wir ausführlich das Protokoll für die Synchronisierung von Caulobacter Belastung NA1000. Wir bieten Protokolle und gemeinsame Tipps zur Fehlerbehebung für Klein- und angelegte Synchronisationen. Das experimentelle Verfahren bietet ein leistungsfähiges Werkzeug, um die räumlich-zeitliche Kontrolle der Caulobacter Zellzyklus und Zellschicksal zu verhören.

Protocol

1. Groß Synchrony – Optimal für Western Blot, Microarray / RNA-Seq und Sonstiges Material Intensive Tests Von einem Gefrierschrank Lager oder eine Platte, wachsen einem 5 ml O / N-Kultur des Stammes NA1000 durch Schütteln bei 28 ° C in PYE Medium. Beimpfen von 0,5 ml der Zellen aus Schritt 1 in 25 ml M2G (Tabellen 1-2) und schüttelt bei 28 ° C, bis die Kultur eine OD 600 zwischen 0,5 und 0,6 erreicht. Impfen Sie die Zellen in 1 l M2G und schütteln bei 28 ° C. S…

Representative Results

Synchronisations ergibt typischerweise zwei Banden von Zellen (1B): der swarmer Band, das eine höhere Dichte hat, und eine gestielte / predivisional Zellenband mit geringerer Dichte. Um sicherzustellen, dass effiziente Synchronisation gemeinsame Kontrollen umfassen die Überwachung der OD 600 und Messung der Konzentrationen von Ctra Protein durch Western-Blot auf verschiedene Zellzykluszeitpunkten. Die OD 600 sollte um etwa 2-fach im Verlauf des Zellzyklus (Figur 2)</stron…

Discussion

The bacterial cell cycle is a fundamental process in life and is important for the study of growth and as a target for next generation antibiotics. Here, we detailed the rapid synchronization procedures for C. crescentus NA1000, a model organism for the study of the bacterial cell cycle and asymmetric cell division. This method is amendable to western blot, gene expression profiling, and fluorescence microscopy assays to investigate the spatiotemporal regulation of the bacterial cell cycle.

<p class='jove_…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank members of the Shapiro lab and Erin Schrader for comments on the manuscript. The authors acknowledge financial support from: NIH postdoctoral fellowship F32 GM100732 to JMS and NIH grants R01 GM51426 and R01 GM32506 to LS.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
PVP Coated Colloidal Silica (Percoll) Sigma-Aldrich P4937
Colloidal Silica (Ludox AS-40) Sigma-Aldrich 420840
JA10 Rotor Beckman-Coulter 369687
JA20 Rotor Beckman-Coulter 334831
Ferrous Sulfate Chelate Solution Sigma-Aldrich F0518
30 mL Centrifuge Tubes Corning 8445
Na2HPO4 EMD SX0720-1
KH2PO4 VWR BDH9268-500G
NH4Cl Amresco 0621-500g

References

  1. McAdams, H. H., Shapiro, L. System-level design of bacterial cell cycle control. FEBS Lett. 583, 3984-3991 (2009).
  2. McAdams, H. H., Shapiro, L. The architecture and conservation pattern of whole-cell control circuitry. J. Mol. Biol. 409, 28-35 (2011).
  3. McAdams, H. H., Shapiro, L. A bacterial cell-cycle regulatory network operating in time and space. Science. 301, 1874-1877 (2003).
  4. Ptacin, J. L., Shapiro, L. Initiating bacterial mitosis: understanding the mechanism of ParA-mediated chromosome segregation. Cell Cycle. 9, 4033-4034 (2010).
  5. Evinger, M., Agabian, N. Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J. Bacteriol. 132, 294-301 (1977).
  6. Tsai, J. W., Alley, M. R. Proteolysis of the Caulobacter McpA chemoreceptor is cell cycle regulated by a ClpX-dependent pathway. J. Bacteriol. 183, 5001-5007 (2001).
  7. Marks, M. E., et al. The genetic basis of laboratory adaptation in Caulobacter crescentus. J. Bacteriol. 192, 3678-3688 (2010).
  8. Ely, B. Genetics of Caulobacter crescentus. Methods Enzymol. 204, 372-384 (1991).
  9. Williams, B., Bhat, N., Chien, P., Shapiro, L. ClpXP and ClpAP proteolytic activity on divisome substrates is differentially regulated following the Caulobacter asymmetric cell division. Mol. Microbiol. 93, 853-866 (2014).
  10. Quon, K. C., Yang, B., Domian, I. J., Shapiro, L., Marczynski, G. T. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl. Acad. Sci. U. S. A. 95, 120-125 (1998).
  11. Laub, M. T., Chen, S. L., Shapiro, L., McAdams, H. H. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc. Natl. Acad. Sci. U. S. A. 99, 4632-4637 (2002).
  12. Quon, K. C., Marczynski, G. T., Shapiro, L. Cell cycle control by an essential bacterial two-component signal transduction protein. Cell. 84, 83-93 (1996).
  13. Ferullo, D. J., Cooper, D. L., Moore, H. R., Lovett, S. T. Cell cycle synchronization of Escherichia coli using the stringent response, with fluorescence labeling assays for DNA content and replication. Methods. 48, 8-13 (2009).
  14. Degnen, S. T., Newton, A. Chromosome replication during development in Caulobacter crescentus. J. Mol. Biol. 64, 671-680 (1972).
  15. Bates, D., et al. The Escherichia coli baby cell column: a novel cell synchronization method provides new insight into the bacterial cell cycle. Mol. Microbiol. 57, 380-391 (2005).
  16. Abel, S., et al. Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the caulobacter cell cycle. PLoS Genet. 9, e1003744 (2013).
  17. Johnson, R. C., Ely, B. Isolation of spontaneously derived mutants of Caulobacter crescentus. 유전학. 86, 25-32 (1977).
  18. Britos, L., et al. Regulatory response to carbon starvation in Caulobacter crescentus. PLoS One. 6, e18179 (2011).
  19. Boutte, C. C., Crosson, S. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol. Microbiol. 80, 695-714 (2011).
check_url/kr/52633?article_type=t

Play Video

Cite This Article
Schrader, J. M., Shapiro, L. Synchronization of Caulobacter Crescentus for Investigation of the Bacterial Cell Cycle. J. Vis. Exp. (98), e52633, doi:10.3791/52633 (2015).

View Video