Summary

の同期<em>カウロバクターCrescentus</em>細菌細胞周期の調査のため

Published: April 08, 2015
doi:

Summary

Synchronization of bacterial cells is essential for studies of the bacterial cell cycle and development. Caulobacter crescentus is synchronizable through density centrifugation allowing a rapid and powerful tool for studies of the bacterial cell cycle. Here we provide a detailed protocol for the synchronization of Caulobacter cells.

Abstract

The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle.

Introduction

細菌の細胞周期は、ゲノムの複製と娘細胞の分裂の両方を制御する。抗生物質耐性は、公衆の健康に成長している脅威であるとして重要なのは、細菌の細胞周期は、抗生物質開発のための未開発の目標を提示します。

細菌カウロバクターcrescentusでは、各細胞周期の異なる運命( 1A)1,2の2つの娘細胞を生じる、非対称分裂に導く。 One娘細胞は鞭毛を継承し、他の娘は茎を継承し、固着されている間運動性である。集積回路の遺伝子は、転写調節、リン酸化シグナル伝達、およびタンパク質分解規制3ことによって、細胞周期の進行および細胞の運命を制御する。また、染色体複製と同時分離は、第4染色体の正確に一つのコピーを含む娘細胞が得られる。重要なことに、これらの2つの細胞型は急速COLLOによって分離することができる高収率( 図1B)を有する集団の残りからswarmer細胞の単離を可能にする同期可能NA1000株5-7 idalシリカ粒子の密度遠心分離。細胞s​​warmer分離された後、非対称細胞分裂を通じて同期的に進む。ここでは、詳細プロトコルは、 カウロバクター株 NA1000を同期させるために使用される。私たちは、プロトコルおよび大規模および小規模の両方の同期のための一般的なトラブルシューティングのヒントを提供する。この実験手順は、 カウロバクター細胞周期と細胞の運命の時空間制御を調べるための強力なツールを提供します。

Protocol

1.大規模同期性 – ウエスタンブロット、マイクロアレイ/ RNA-SEQ、およびその他素材集中アッセイに最適冷凍庫ストック又はプレートから、PYE培地で28℃で振とうすることにより歪NA1000の5ミリリットルO / N培養を成長。 M2Gの25ミリリットル(表1-2)に、ステップ1からの細胞の0.5ミリリットルを接種し、培養が0.5と0.6の間のOD 600に達するまで28℃で振る。 M2G…

Representative Results

より高い密度を有するswarmerバンド、およびより低い密度のストーカー/ predivisionalセル帯域:同期は、典型的には、セルの二つのバンド( 図1B)が得られる。効率的な同期を確実にするために共通のコントロールがOD 600を監視し、異なる細胞周期の時点でウエスタンブロットによりCTRAタンパク質のレベルを測定することを含む。 OD 600は、細胞周期( 図2)</s…

Discussion

The bacterial cell cycle is a fundamental process in life and is important for the study of growth and as a target for next generation antibiotics. Here, we detailed the rapid synchronization procedures for C. crescentus NA1000, a model organism for the study of the bacterial cell cycle and asymmetric cell division. This method is amendable to western blot, gene expression profiling, and fluorescence microscopy assays to investigate the spatiotemporal regulation of the bacterial cell cycle.

<p class='jove_…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank members of the Shapiro lab and Erin Schrader for comments on the manuscript. The authors acknowledge financial support from: NIH postdoctoral fellowship F32 GM100732 to JMS and NIH grants R01 GM51426 and R01 GM32506 to LS.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
PVP Coated Colloidal Silica (Percoll) Sigma-Aldrich P4937
Colloidal Silica (Ludox AS-40) Sigma-Aldrich 420840
JA10 Rotor Beckman-Coulter 369687
JA20 Rotor Beckman-Coulter 334831
Ferrous Sulfate Chelate Solution Sigma-Aldrich F0518
30 mL Centrifuge Tubes Corning 8445
Na2HPO4 EMD SX0720-1
KH2PO4 VWR BDH9268-500G
NH4Cl Amresco 0621-500g

References

  1. McAdams, H. H., Shapiro, L. System-level design of bacterial cell cycle control. FEBS Lett. 583, 3984-3991 (2009).
  2. McAdams, H. H., Shapiro, L. The architecture and conservation pattern of whole-cell control circuitry. J. Mol. Biol. 409, 28-35 (2011).
  3. McAdams, H. H., Shapiro, L. A bacterial cell-cycle regulatory network operating in time and space. Science. 301, 1874-1877 (2003).
  4. Ptacin, J. L., Shapiro, L. Initiating bacterial mitosis: understanding the mechanism of ParA-mediated chromosome segregation. Cell Cycle. 9, 4033-4034 (2010).
  5. Evinger, M., Agabian, N. Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J. Bacteriol. 132, 294-301 (1977).
  6. Tsai, J. W., Alley, M. R. Proteolysis of the Caulobacter McpA chemoreceptor is cell cycle regulated by a ClpX-dependent pathway. J. Bacteriol. 183, 5001-5007 (2001).
  7. Marks, M. E., et al. The genetic basis of laboratory adaptation in Caulobacter crescentus. J. Bacteriol. 192, 3678-3688 (2010).
  8. Ely, B. Genetics of Caulobacter crescentus. Methods Enzymol. 204, 372-384 (1991).
  9. Williams, B., Bhat, N., Chien, P., Shapiro, L. ClpXP and ClpAP proteolytic activity on divisome substrates is differentially regulated following the Caulobacter asymmetric cell division. Mol. Microbiol. 93, 853-866 (2014).
  10. Quon, K. C., Yang, B., Domian, I. J., Shapiro, L., Marczynski, G. T. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl. Acad. Sci. U. S. A. 95, 120-125 (1998).
  11. Laub, M. T., Chen, S. L., Shapiro, L., McAdams, H. H. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc. Natl. Acad. Sci. U. S. A. 99, 4632-4637 (2002).
  12. Quon, K. C., Marczynski, G. T., Shapiro, L. Cell cycle control by an essential bacterial two-component signal transduction protein. Cell. 84, 83-93 (1996).
  13. Ferullo, D. J., Cooper, D. L., Moore, H. R., Lovett, S. T. Cell cycle synchronization of Escherichia coli using the stringent response, with fluorescence labeling assays for DNA content and replication. Methods. 48, 8-13 (2009).
  14. Degnen, S. T., Newton, A. Chromosome replication during development in Caulobacter crescentus. J. Mol. Biol. 64, 671-680 (1972).
  15. Bates, D., et al. The Escherichia coli baby cell column: a novel cell synchronization method provides new insight into the bacterial cell cycle. Mol. Microbiol. 57, 380-391 (2005).
  16. Abel, S., et al. Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the caulobacter cell cycle. PLoS Genet. 9, e1003744 (2013).
  17. Johnson, R. C., Ely, B. Isolation of spontaneously derived mutants of Caulobacter crescentus. 유전학. 86, 25-32 (1977).
  18. Britos, L., et al. Regulatory response to carbon starvation in Caulobacter crescentus. PLoS One. 6, e18179 (2011).
  19. Boutte, C. C., Crosson, S. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol. Microbiol. 80, 695-714 (2011).
check_url/kr/52633?article_type=t

Play Video

Cite This Article
Schrader, J. M., Shapiro, L. Synchronization of Caulobacter Crescentus for Investigation of the Bacterial Cell Cycle. J. Vis. Exp. (98), e52633, doi:10.3791/52633 (2015).

View Video