Summary

Synkronisering av<em> Caulobacter Crescentus</em> For etterforskning av bakteriecellen Cycle

Published: April 08, 2015
doi:

Summary

Synchronization of bacterial cells is essential for studies of the bacterial cell cycle and development. Caulobacter crescentus is synchronizable through density centrifugation allowing a rapid and powerful tool for studies of the bacterial cell cycle. Here we provide a detailed protocol for the synchronization of Caulobacter cells.

Abstract

The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle.

Introduction

Den bakterielle cellesyklus styrer både replikasjon av genomet, og delingen av datterceller. Viktigere, som antibiotikaresistens er en voksende trussel mot folkehelsen, presenterer bakterienes cellesyklusen en uutnyttet mål for antibiotika utvikling.

I bakterien Caulobacter crescentus, fører hver celle syklus til en asymmetrisk divisjon har resultert i to datterceller med forskjellige skjebner (Figur 1a) 1,2. En datter celle arver en flagellum og er bevegelige mens den andre datter arver en stilk og er fastsittende. En integrert genetisk krets styrer cellecyklusprogresjonen og celle skjebne ved transkripsjonsregulering, fosfor-signalering, og regulert proteolyse tre. I tillegg kromosomreplikasjon og samtidige segregering avkastning datterceller som inneholder nøyaktig én kopi av kromosom 4. Viktigere, kan disse to celletyper hurtig separeres ved Colloidal silisiumdioksyd partikkeltetthet sentrifugering i synchronizable NA1000 stamme 5-7 som tillater isolering av Swarmer cellene fra resten av befolkningen med høye utbytter (figur 1B). Isolert Swarmer cellene deretter fortsette synkront gjennom asymmetrisk celledeling. Her, vi detalj protokollen som brukes for å synkronisere Caulobacter belastning NA1000. Vi gir protokoller og vanlige feilsøkingstips for både stor og liten skala synkroniseringer. Dette eksperimentelle prosedyren gir et kraftig verktøy for å avhøre den spatiotemporal kontroll av Caulobacter cellesyklusen og celle skjebne.

Protocol

1. Storskala Synchrony – Optimal for Western Blot, Microarray / RNA-Seq, og andre vesentlige Intensive Analyser Fra en fryse lager eller en plate, blir en 5 ml O / N kultur av stamme NA1000 ved risting ved 28 ° C i PYE medium. Inokulere 0,5 ml av cellene fra trinn 1 i 25 ml M2G (tabell 1-2) og ristes ved 28 ° C inntil kulturen når en OD 600 på mellom 0,5 og 0,6. Inokulere cellene i 1 liter M2G og ristes ved 28 ° C. Når OD 600 når 0,5 til 0,6, bekrefte…

Representative Results

Synkronisering vanligvis gir to bånd av celler (figur 1B): den Swarmer bandet, som har en høyere tetthet, og en stilk / predivisional cellebånd med lavere tetthet. For å sikre effektiv synkronisering vanlige kontroller omfatter overvåking av OD 600 og måle nivåene av Ctra protein av western blot på forskjellige cellesyklus tidspunkter. OD 600 bør øke med omtrent 2 ganger i løpet av cellesyklusen (figur 2). Western blot for cellesyklus hovedregulator Ctra…

Discussion

The bacterial cell cycle is a fundamental process in life and is important for the study of growth and as a target for next generation antibiotics. Here, we detailed the rapid synchronization procedures for C. crescentus NA1000, a model organism for the study of the bacterial cell cycle and asymmetric cell division. This method is amendable to western blot, gene expression profiling, and fluorescence microscopy assays to investigate the spatiotemporal regulation of the bacterial cell cycle.

<p class='jove_…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank members of the Shapiro lab and Erin Schrader for comments on the manuscript. The authors acknowledge financial support from: NIH postdoctoral fellowship F32 GM100732 to JMS and NIH grants R01 GM51426 and R01 GM32506 to LS.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
PVP Coated Colloidal Silica (Percoll) Sigma-Aldrich P4937
Colloidal Silica (Ludox AS-40) Sigma-Aldrich 420840
JA10 Rotor Beckman-Coulter 369687
JA20 Rotor Beckman-Coulter 334831
Ferrous Sulfate Chelate Solution Sigma-Aldrich F0518
30 mL Centrifuge Tubes Corning 8445
Na2HPO4 EMD SX0720-1
KH2PO4 VWR BDH9268-500G
NH4Cl Amresco 0621-500g

References

  1. McAdams, H. H., Shapiro, L. System-level design of bacterial cell cycle control. FEBS Lett. 583, 3984-3991 (2009).
  2. McAdams, H. H., Shapiro, L. The architecture and conservation pattern of whole-cell control circuitry. J. Mol. Biol. 409, 28-35 (2011).
  3. McAdams, H. H., Shapiro, L. A bacterial cell-cycle regulatory network operating in time and space. Science. 301, 1874-1877 (2003).
  4. Ptacin, J. L., Shapiro, L. Initiating bacterial mitosis: understanding the mechanism of ParA-mediated chromosome segregation. Cell Cycle. 9, 4033-4034 (2010).
  5. Evinger, M., Agabian, N. Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J. Bacteriol. 132, 294-301 (1977).
  6. Tsai, J. W., Alley, M. R. Proteolysis of the Caulobacter McpA chemoreceptor is cell cycle regulated by a ClpX-dependent pathway. J. Bacteriol. 183, 5001-5007 (2001).
  7. Marks, M. E., et al. The genetic basis of laboratory adaptation in Caulobacter crescentus. J. Bacteriol. 192, 3678-3688 (2010).
  8. Ely, B. Genetics of Caulobacter crescentus. Methods Enzymol. 204, 372-384 (1991).
  9. Williams, B., Bhat, N., Chien, P., Shapiro, L. ClpXP and ClpAP proteolytic activity on divisome substrates is differentially regulated following the Caulobacter asymmetric cell division. Mol. Microbiol. 93, 853-866 (2014).
  10. Quon, K. C., Yang, B., Domian, I. J., Shapiro, L., Marczynski, G. T. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl. Acad. Sci. U. S. A. 95, 120-125 (1998).
  11. Laub, M. T., Chen, S. L., Shapiro, L., McAdams, H. H. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc. Natl. Acad. Sci. U. S. A. 99, 4632-4637 (2002).
  12. Quon, K. C., Marczynski, G. T., Shapiro, L. Cell cycle control by an essential bacterial two-component signal transduction protein. Cell. 84, 83-93 (1996).
  13. Ferullo, D. J., Cooper, D. L., Moore, H. R., Lovett, S. T. Cell cycle synchronization of Escherichia coli using the stringent response, with fluorescence labeling assays for DNA content and replication. Methods. 48, 8-13 (2009).
  14. Degnen, S. T., Newton, A. Chromosome replication during development in Caulobacter crescentus. J. Mol. Biol. 64, 671-680 (1972).
  15. Bates, D., et al. The Escherichia coli baby cell column: a novel cell synchronization method provides new insight into the bacterial cell cycle. Mol. Microbiol. 57, 380-391 (2005).
  16. Abel, S., et al. Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the caulobacter cell cycle. PLoS Genet. 9, e1003744 (2013).
  17. Johnson, R. C., Ely, B. Isolation of spontaneously derived mutants of Caulobacter crescentus. 유전학. 86, 25-32 (1977).
  18. Britos, L., et al. Regulatory response to carbon starvation in Caulobacter crescentus. PLoS One. 6, e18179 (2011).
  19. Boutte, C. C., Crosson, S. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol. Microbiol. 80, 695-714 (2011).
check_url/kr/52633?article_type=t

Play Video

Cite This Article
Schrader, J. M., Shapiro, L. Synchronization of Caulobacter Crescentus for Investigation of the Bacterial Cell Cycle. J. Vis. Exp. (98), e52633, doi:10.3791/52633 (2015).

View Video