Summary

直立成像<em>果蝇</em>蛋钱伯斯

Published: March 13, 2015
doi:

Summary

The upright imaging method described in this protocol allows for the detailed visualization of the poles of a developing Drosophila melanogaster egg. This end-on view provides a new perspective into the arrangements and morphologies of multiple cell types in the follicular epithelium.

Abstract

Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective.

Introduction

研究果蝇提供了巨大的见解的各种现象的遗传调控。特别是,出现了对蛋发展广泛的研究,因为卵子发生提供了一种易于处理的方式来调查许多不同的发育过程,包括组织图案化,细胞极性的变化,细胞周期的开关,和翻译调控1,2,3,4。卵子发生过程中一个重要的事件形态是一组细胞称为边缘细胞(5审查)的规格,收购蠕动,和迁移。因为细胞迁移是动物形态的一个主要特点,并且因为这个过程的基因调节是非常保守,在果蝇确定的机制很可能是在其他情况下非常重要的。因此,我们正在调查边境细胞迁移的分子控制。对于我们的研究,我们已经开发出一种新的方法来观察开发鸡蛋的前极,其中,边缘细胞产生,检查他们详细介绍了如何发展。

内卵巢,卵腔室中的不同发育阶段沿链称为卵巢管,其包封在薄鞘( 图1A)存在。每个鸡蛋室将继续形成一个鸡蛋。在卵子发生,几种不同类型的细胞必须协调发展的方式。 D.果蝇卵室由16个种系细胞,包括1卵母细胞,由单层滤泡上皮6包围。出现在上皮的前部和后部磁极少数特殊细胞,称为极性细胞。 6-8边缘细胞起源于卵室的前上皮细胞,诱导细胞极性5,7。在中期卵子发生(9级),边界细胞从他们的邻居和分离的滋养细胞之间迁移的卵室5,7的后到达卵母细胞。这个动作必须完成而边缘细胞停留在周边两个非能动极性细胞集群,使之成为一个类型的集体细胞迁移。边界小区集群的成功迁移确保蛋壳的珠孔,这是必要的施肥适当发展。

前极性细胞指示边境细胞命运通过激活的信号传导级联。极性细胞分泌细胞因子,不成对(UPD),其结合跨膜受体,无圆顶(DOME),对卵母细胞发育的8,9级8中相邻的毛囊细胞。 UPD的结合导致的Janus酪氨酸激酶(JAK)磷酸化转录(STAT)8,10,11的信号转导和激活。 STAT然后移动到细胞核来激活转录。慢边缘细胞(SLBO)是一种转录因子是STAT的直接转录目标,也需要边境细胞迁移12。蛋室外侧观点表明吨帽子STAT活性调节横跨前壁上皮8,11,13-阿松香三烯梯度。最接近极性细胞毛囊细胞具有活化的STAT的最高水平,因而它们变得边缘细胞和侵入相邻的种系组织。

理解边界细胞是如何内指定,并从上皮脱落,我们需要观察如何组织的组织结构。如果我们把鸡蛋室来自前上的角度来看,我们希望在周边极地细胞的毛囊细胞STAT活动的径向对称。一个端视图还更精确地之前和脱离比不同的焦平面相比较的细胞中表现出的膜蛋白和细胞间的接口的差异。因为蛋室是长方形和彼此附接由柄细胞,它们定居到载玻片横向,从而难以观察前架构。因此,有关的细胞在卵腔的磁极多的信息具有被推断,从横向的看法。虽然一些信息可以通过光的部分,光散射,光漂白算法的3-D重建,并在Z轴分辨率较差限制得到使该信息少在没有像超分辨率显微镜14昂贵的技术详细和可靠。其他种类的部分的基于成像(例如,电子显微镜或薄样切片机的切片)需要大量的操作的组织,包括脱水,增加了对工件的可能性。因此,我们开发了一种新的方法来形象D.果蝇卵室,而直立。这种方法已经被证明非常有用在阐明如何游动细胞注定(见代表性的成果和曼宁等人,正在审查 ),并且很可能是更广泛的有价值的卵子等方面的研究。

Protocol

1.解剖卵巢管的转约15 2-4日龄雌性果蝇和少数的男性用加入活性干酵母新鲜飞食品小瓶中。使用棉作为插件的小瓶,并添加几滴水到棉花,以保持湿度较高。 在25℃的培养箱中14-16小时处小瓶最大化阶段8-10卵室的数目。 注:取决于温度和所需的阶段孵化时间会有所不同。 制备夹层媒体,0.1M KPO 4和NP40的解决方案,根据需要,为第二天(见材料)。 麻醉使?…

Representative Results

直立成像方法使我们能够看到细胞中的前滤泡上皮的直接的组织在阶段8,一种一般标记毛囊细胞命运,眼中的缺席(EYA)蛋白质,以及核DNA的DAPI标记,表明即使表达横跨细胞的这个领域,并表明,所有的细胞可被视为具有类似染色强度( 图2B“)。蛋白响应于细胞因子UPD调节,但是,显示出可变图案和表达水平。极地细胞释放UPD顶部之前,这个阶段卵子发育16,17的,所以我?…

Discussion

在这里,我们描述的方法来安装和图像小,从终端的角度上制定的蛋室。成像蛋室常见的技术横向的意见进行了优化,主要允许内 – 外滤泡细胞的精确的可视化,当用荧光抗体染色。在观看多个焦平面使用的Z-堆栈或三维重建助剂,但仍有不足之处为亚细胞的椭圆卵腔室( 图2D)的极点的分辨率。虽然这可以部分地用诸如超分辨率成像的最新的显微技术来克服,这些方法是昂贵的并且…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We appreciate assistance from members of the fly community, particularly Dr. Denise Montell, Dr. Lynn Cooley, and Dr. Pernille Rorth, for reagents. We thank Flybase, the Bloomington Drosophila Stock Center, and Developmental Studies Hybridoma Bank for information and providing fly stocks and antibodies, respectively. LM is supported by the Department of Education Grant, Graduate Assistance in the Areas of National Need (GAANN) training fellowship (P200A120017) and by a NIGMS Initiative for Maximizing Student Development Grant (2 R25-GM55036). A portion of the microscopy work was supported by NSF MRI grant DBI-0722569 and the Keith R. Porter Core Imaging Facility. Research was supported in part by a NSF CAREER Award (1054422) and a Basil O’Connor Starter Scholar Award from the March of Dimes, both awarded to MSG.

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
0.1 M Potassium phosphate Buffer (KPO4 Buffer) Add 3.1 g of NaH2PO4•H2O and 10.9 g of Na2HPO4 (anhydrous) to distilled H2O to make a volume of 1 L. The pH of the final solution will be 7.4. This buffer can be stored for up to 1 mo at 4°C.
16% Paraformaldehyde aqueous solution, EM grade Electron Microscopy Sciences 15710 methanol-free to preserve GFP fluorescence
30G x 1/2 inch needle  VWR BD305106 Regular bevel
Active Dry Yeast Genesee Scientific 62-103 To fatten female flies
Bovine Serum Albumin PAA-cell culture company A15-701 Used in NP40 Wash Buffer
Dumont #5 Forceps Fine Science Tools 11295-10 Dumostar alloy, biologie tip; sharp tips are essential for ovariole dissection
DAPI (4′,6-Diamidino-2-phenylindole dihydrochloride) Sigma Aldrich D9542 5mg/ml stock solution  
Fetal Bovine Serum (FBS) Life Technologies 16140-071 Added to supplement dissection medium (10%) 
Glass culture tube VWR 47729-576 14mL
Glass Depression Slides VWR 470019-020 1.2 mm Thick, Double Cavity
Glycerin Jelly  Electron Microsocpy Sciences 17998-10 Mounting media
Glycerol IBI Scientific IB15760 70% in PBS
IGEPAL CA-630 Sigma Aldrich I3021-500ML (interchangable for Nonidet P-40)  Used in NP40 Wash Buffer 
Leica Fluorescent Stereoscope  Leica Microsystems
Leica SP5 Confocal Microscope Leica Microsystems 40x/0.55NA dry objective 
Micro spatula  VWR 82027-518 Stainless steel
Microknife  Roboz Surgical Instrument Company 37-7546 45ᵒ angle
Microscope Slide VWR 16004-368 75x25x1 mm
NP40 Wash Buffer 50mM TRIS-HCL, 150mM NaCl, 0.5% Ipegal, 1mg/ml BSA, and 0.02% sodium azide
Penicillin-Streptomycin-Glutamine Life Technologies 10378-016 Added to supplement dissection medium (0.6X)
Petridish- Polysterine, sterile VWR 82050-548 60Wx15H mm
Phosphate Buffer Saline Sigma Aldrich P3813-10PAK 10 packs of Powder
Potassium phosphate dibasic Sigma Aldrich P3786-500G Used in 0.1M KPO4 Buffer 
Potassium phosphate monobasic Sigma Aldrich P9791-500G Used in 0.1M KPO4 Buffer 
Schneider’s Insect Medium Life Technologies
11720018
With L-glutamine and sodium bicarbonate
Sodium azide Sigma Aldrich S2002-25G Used in fluorescent antibody staining
Sodium chloride Sigma Aldrich S3014-500G Used in NP40 Wash Buffer
TRIS-HCL IBI Scientific IB70144 1M TRIS-HCL, pH 7.4
Volocity 3D Image Analysis Software PerkinElmer For processing confocal Z-stacks

References

  1. Hudson, A. M., Cooley, L. Methods for studying oogenesis. Methods. 68 (1), 207-217 (2014).
  2. Bastock, R., St Johnston, D. Drosophila oogenesis. Curr Biol. 18 (23), R1082-R1087 (2008).
  3. Wu, X., Tanwar, P. S., Raftery, L. A. Drosophila follicle cells: morphogenesis in an eggshell. Semin Cell Dev Biol. 19 (3), 271-282 (2008).
  4. Bilder, D., Haigo, S. L. Expanding the morphogenetic repertoire: perspectives from the Drosophila egg. Dev Cell. 22 (1), 12-23 (2012).
  5. Montell, D. J., Yoon, W. H., Starz-Gaiano, M. Group choreography: mechanisms orchestrating the collective movement of border cells. Nat Rev Mol Cell Biol. 13 (10), 631-645 (2012).
  6. Spradling, A. C., Bate, M., Marinez-Arias, A. Developmental genetics of oogenesis. The Development of Drosophila melanogaster. , 1-70 (1993).
  7. Montell, D. J. Border-cell migration: the race is on. Nat Rev Mol Cell Biol. 4 (1), 13-24 (2003).
  8. Silver, D., Geisbrecht, E., Montell, D. Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development. 132 (15), 3483-3492 (2005).
  9. Ghiglione, C., et al. The Drosophila cytokine receptor Domeless controls border cell migration and epithelial polarization during oogenesis. Development. 129 (23), 5437-5447 (2002).
  10. Denef, N., Schüpbach, T. Patterning: JAK-STAT signalling in the Drosophila follicular epithelium. Curr Biol. 13 (10), R388-R390 (2003).
  11. Beccari, S., Teixeira, L., Rørth, P. The JAK/STAT pathway is required for border cell migration during Drosophila oogenesis. Mech Dev. 111 (1-2), 115-123 (2002).
  12. Montell, D., Rorth, P., Spradling, A. slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell. 71 (1), 51-62 (1992).
  13. Xi, R., McGregor, J., Harrison, D. A gradient of JAK pathway activity patterns the anterior-posterior axis of the follicular epithelium. Dev Cell. 4 (2), 167-177 (2003).
  14. Toomre, D., Bewersdorf, J. A new wave of cellular imaging. Annu Rev Cell Dev Biol. 26, 285-314 (2010).
  15. McDonald, J., Pinheiro, E., Kadlec, L., Schupbach, T., Montell, D. Multiple EGFR ligands participate in guiding migrating border cells. Dev Biol. 296 (1), 94-103 (2006).
  16. Van de Bor, V., Zimniak, G., Cérézo, D., Schaub, S., Noselli, S. Asymmetric localisation of cytokine mRNA is essential for JAK/STAT activation during cell invasiveness. Development. 138 (7), 1383-1393 (2011).
  17. Hayashi, Y., et al. Glypicans regulate JAK/STAT signaling and distribution of the Unpaired morphogen. Development. 139 (22), 4162-4171 (2012).
  18. Airoldi, S. J., McLean, P. F., Shimada, Y., Cooley, L. Intercellular protein movement in syncytial Drosophila follicle cells. J Cell Sci. 124 (Pt 23), 4077-4086 (2011).
  19. Rørth, P., et al. Systematic gain-of-function genetics in Drosophila). Development. 125 (6), 1049-1057 (1998).
  20. Lee, T., Lee, A., Luo, L. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development. 126 (18), 4065-4076 (1999).
  21. Shimada, Y., Burn, K. M., Niwa, R., Cooley, L. Reversible response of protein localization and microtubule organization to nutrient stress during Drosophila early oogenesis. Dev Biol. 355 (2), 250-262 (2011).
  22. Quiñones-Coello, A. T., et al. Exploring strategies for protein trapping in Drosophila. 유전학. 175 (3), 1089-1104 (2007).
  23. Buszczak, M., et al. The carnegie protein trap library: a versatile tool for Drosophila developmental studies. 유전학. 175 (3), 1505-1531 (2007).
  24. Belu, M., et al. Upright imaging of Drosophila embryos. J Vis Exp. (43), (2010).
  25. Witzberger, M. M., Fitzpatrick, J. A., Crowley, J. C., Minden, J. S. End-on imaging: a new perspective on dorsoventral development in Drosophila embryos. Dev Dyn. 237 (11), 3252-3259 (2008).
check_url/kr/52636?article_type=t

Play Video

Cite This Article
Manning, L., Starz-Gaiano, M. Upright Imaging of Drosophila Egg Chambers. J. Vis. Exp. (97), e52636, doi:10.3791/52636 (2015).

View Video