Summary

Biolistische Transformatie van een TL Tagged Gene in de Opportunistische schimmelpathogeen<em> Cryptococcus neoformans</em

Published: March 19, 2015
doi:

Summary

Biolistische transformatie een methode om stabiele integratie van DNA genereren in het genoom van de opportunistische pathogeen Cryptococcus neoformans via homologe recombinatie. We zullen biolistische transformatie van een construct, waarin het gen codeert acetaat kinase gefuseerd met de fluorescerende tag mCherry in C. neoformans is aangetoond.

Abstract

De basidiomycete Cryptococcus neoformans, een invasieve opportunistische pathogeen van het centrale zenuwstelsel, is de meest voorkomende oorzaak van fungale meningitis wereldwijd resulteert in meer dan 625.000 doden per jaar wereldwijd. Hoewel elektroporatie is ontwikkeld voor de transformatie van plasmiden Cryptococcus, alleen biolistische levering een effectief middel om lineair DNA die kunnen worden geïntegreerd in het genoom door homologe recombinatie transformeren.

Acetaat is aangetoond dat een belangrijk fermentatieproduct tijdens cryptococcal infectie, maar de betekenis hiervan is nog niet bekend. Een bacteriële pad bestaande uit enzymen xylulose-5-fosfaat / fructose-6-fosfaat fosfoketolase (Xfp) en acetaat kinase (Ack) is een van drie manieren waarop acetaat productie C. neoformans. Hier tonen we de biolistische transformatie van een construct,waarin het gen codeert Ack is gefuseerd met de fluorescente tag mCherry, in C. neoformans. Wij bevestigen dan is integratie van de ACK -mCherry fusie in de ACK locus.

Introduction

Cryptococcus neoformans, an invasive opportunistic pathogen of the central nervous system, is the most frequent cause of fungal meningitis resulting in more than 625,000 deaths per year worldwide 1. Acetate has been shown to be a major fermentation product during cryptococcal infection 2,3,4, and genes encoding enzymes from three putative acetate-producing pathways have been shown to be upregulated during infection 5. This suggests that acetate production and transport may be a necessary and required part of the pathogenic process; however, the significance of this is not yet understood. One possible pathway for acetate production is the xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) – acetate kinase (Ack), a pathway previously thought to be present only in bacteria but recently identified in both euascomycete as well as basidiomycete fungi, including C. neoformans 6.

To determine the localization of these enzymes of this pathway in the cell, a construct carrying a neomycin resistance gene downstream of an ACK gene fusion to the fluorescent tag mCherry (ACK:mCherry:Neo) will be introduced into C. neoformans using the well-established method of biolistic transformation 7,8. Although electroporation is an efficient method for transformation of plasmids that will be maintained as episomes into Cryptococcus 9, it is not useful in creating stable homologous transformants 8. Only biolistic delivery using a gene gun provides an effective means to transform linear DNAs that will be integrated into the genome by homologous recombination. For example, Edman et al. showed that of the transformants resulting from electroporation of a plasmid-borne URA5 selectable marker into C. neoformansura5 mutants, just 0.001 to 0.1% of transformants were stable 9. Chang et al. achieved just a 0.25% stable transformation efficiency using electroporation to reconstitute capsule production in an acapsular mutant 10. Unlike electroporation, biolistic transformation has been shown to result in stable transformation efficiency of 2-50% depending on the gene that is being altered 7,8,11.

This visual experiment will provide a step-by-step demonstration of biolistic transformation of the linear ACK:mCherry:Neo DNA construct into C. neoformans, and will describe how to confirm its proper integration via homologous recombination into the ack locus. The protocol demonstrated here is a modification of the method developed in the Perfect laboratory 8.

Protocol

OPMERKING: De algemene opzet van dit protocol is geschetst in figuur 1. 1. C. neoformans Voorbereiding Voor elke transformatie reactie, groeien een 2-3 ml O / N cultuur van C. neoformans in YPD-medium bij 30 ° C onder schudden bij 250 rpm. Centrifugeer de O / N kweek gedurende 5 min bij 900 x g bij 10 ° C en de bovenstaande vloeistof. Resuspendeer elk celpellet in 300 gl gist pepton dextrose (YPD) medium. Met glasp…

Representative Results

Een succesvolle biolistische transformatie van C. neoformans kan worden verkregen door het volgen van dit protocol schema (figuur 1). Met biolistische transformatie, is een succesvolle shoot van de gecoate gouden kralen aangegeven door een gouden ring zichtbaar op het bord nadat het DNA is geschoten (Figuur 2A). Kolonies verschijnt binnen 4-5 dagen wanneer bewaard bij kamertemperatuur na het uitplaten van de cellen teruggewonnen uit de YPD + 1M sorbitol platen op selectieve med…

Discussion

Utilizing this protocol, biolistic transformation can be accomplished in which linear DNA is integrated into a desired locus in the Cryptococcus neoformans genome by homologous recombination. Certain steps in the protocol can have a dramatic effect on the effectiveness/efficiency of the transformation. For a successful transformation, it is imperative that the DNA utilized in the shoot has a concentration of at least 1 µg. However, the volume of DNA added to the gold beads can be increased in the chance the…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dit werk werd ondersteund door de awards van de National Science Foundation (Award # 0.920.274) en de Zuid-Carolina Experiment Station Project SC-1.700.340. Deze paper isTechnical Bijdrage No. 6283 van de Clemson University Experiment Station. De auteurs danken dr Lukasz Kozubowski voor zijn nuttig advies bij de ontwikkeling van deze laatste protocol en Dr. Cheryl Ingram-Smith, Katie Glenn, en Grace Kisirkoi voor hun kritische lezing van het manuscript.

Materials

Product Company Catalog # Website
0.6 μm gold beads Bio-Rad 165-2262 http://www.bio-rad.com
Spermadine-free base Sigma- Aldrich S0266 https://www.sigmaaldrich.com
G418 – Sulfate (Neomycin) Gold Biotechnology G-418-10 www.goldbio.com
Hygromycin Gold Biotechnology H-270-1 www.goldbio.com
1350 psi Rupture Discs Bio-Rad 165-2330 http://www.bio-rad.com
Stopping Screens Bio-Rad 165-2336 http://www.bio-rad.com
Macrocarriers discs Bio-Rad 165-2335 http://www.bio-rad.com
YPD Broth Becton Dickinson & Co. 242820 www.bd.com
Agar Becton Dickinson & Co. 214530 www.bd.com
Sorbitol Fisher Scientific BP439 http://www.fishersci.com
PDS-1000/He System Bio-Rad 165-2257 http://www.bio-rad.com
Microscope Zeiss Axio http://www.zeiss.com/microscopy
KOD One Step PCR Kit EMD Millipore 71086-4 http://www.emdmillipore.com
One Step RT-PCR Kit Qiagen 210212 www.qiagen.com
Wizard Genomic DNA Purification Kit Promega A1120 www.promega.com
RNeasy Mini Kit Qiagen 74104 www.qiagen.com
Mini Beadbeater – 1 BioSpecs 3110BX http://www.biospec.com
Microfuge 18 Centrifuge Beckman Coulter F241.5P www.beckmancoulter.com
Microplate Spectrophotometer BioTek EPOCH www.biotek.com

References

  1. Price, M. S., et al. Cryptococcusneoformans requires a functional glycolytic pathway for disease but not persistence in the host. MBio. 2, e00103-e00111 (2011).
  2. Bubb, W. A., et al. Heteronuclear NMR studies of metabolites produced by Cryptococcusneoformans in culture media: identification of possible virulence factors. Magn Reson Med. 42, 442-453 (1999).
  3. Himmelreich, U., et al. Identification of metabolites of importance in the pathogenesis of pulmonary cryptococcoma using nuclear magnetic resonance spectroscopy. Microbes Infect. 5, 285-290 (2003).
  4. Wright, L., et al. Metabolites released by Cryptococcusneoformans var. neoformans and var. gattii differentially affect human neutrophil function. Microbes Infect. 4, 1427-1438 (2002).
  5. Hu, G., Cheng, P. Y., Sham, A., Perfect, J. R., Kronstad, J. W. Metabolic adaptation in Cryptococcusneoformans during early murine pulmonary infection. Mol Microbiol. 69, 1456-1475 (2008).
  6. Ingram-Smith, C., Martin, S. R., Smith, K. S. Acetate kinase: not just a bacterial enzyme. Trends Microbiol. 14, 249-253 (2006).
  7. Davidson, R. C., et al. Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genet Biol: FG & B. 29, 38-48 (2000).
  8. Toffaletti, D. L., Rude, T. H., Johnston, S. A., Durack, D. T., Perfect, J. R. Gene transfer in Cryptococcusneoformans by use of biolistic delivery of DNA. J. Bacteriol. 175, 1405-1411 (1993).
  9. Edman, J. C., Kwon-Chung, K. J. Isolation of the URA5 gene from Cryptococcusneoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol. 10, 4538-4544 (1990).
  10. Chang, Y. C., Kwon-Chung, K. J. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol. 14, 4912-4919 (1994).
  11. Del Poeta, M., et al. Topoisomerase I is essential in Cryptococcusneoformans: role In pathobiology and as an antifungal target. 유전학. 152, 167-178 (1999).
  12. McClelland, C. M., Chang, Y. C., Kwon-Chung, K. J. High frequency transformation of Cryptococcusneoformans and Cryptococcusgattii by Agrobacteriumtumefaciens. Fungal Genet Biol:FG & B. 42, 904-913 (2005).
  13. Gan, W. B., Grutzendler, J., Wong, W. T., Wong, R. O., Lichtman, J. W. Multicolor ‘DiOlistic’ labeling of the nervous system using lipophilic dye combinations. Neuron. 27, 219-225 (2000).
  14. Nicola, A. M., Frases, S., Casadevall, A. Lipophilic dye staining of Cryptococcusneoformans extracellular vesicles and capsule. Eukaryot Cell. 8, 1373-1380 (2009).
check_url/kr/52666?article_type=t

Play Video

Cite This Article
Taylor, T., Bose, I., Luckie, T., Smith, K. Biolistic Transformation of a Fluorescent Tagged Gene into the Opportunistic Fungal Pathogen Cryptococcus neoformans. J. Vis. Exp. (97), e52666, doi:10.3791/52666 (2015).

View Video