Summary

封装产热前脂肪细胞移植到脂肪组织仓库

Published: June 02, 2015
doi:

Summary

Here, we present a protocol for encapsulation of catabolic cells, which consume lipids for heat production in intra-abdominal adipose tissue and increase energy dissipation in obese mice.

Abstract

电池封装的开发是为了半透膜中俘获的活细胞。嫁接封装细胞所用的处理过的宿主组织中交换的低分子量代谢物,以达到长期存活。半透膜允许移入的封装细胞以避免排斥反应的免疫系统。封装过程是为了使生物活性化合物,诸如胰岛素,其他激素和细胞因子的受控释放。在这里,我们描述了用于分解代谢细胞,其消耗的脂质为产热和能量耗散(产热)的肥胖小鼠的腹腔内脂肪组织的封装的方法。产热分解代谢的细胞封装可能潜在地适用于肥胖的预防和治疗2型糖尿病。分解代谢细胞的另一个潜在的应用可​​以包括由醇或其他有毒的代谢物和环境污染物解毒。

Introduction

慢性疾病1发病率越来越高已经加强了对治疗的细胞群2的移植。同源或异基因干细胞可用于这些应用2中最常用的细胞类型。然而,这些治疗不允许分化和干细胞的迁移植入后的控制,并没有成本效益。遗传修饰的细胞与有益功能的移植预期改善许多疾病的治疗。然而,遗传细胞修饰由宿主的免疫系统所识别,因此,这些处理需要免疫抑制3。细胞产生胰岛素的封装已经制定了张大夫4。该技术是基于细胞的藻酸盐微滴被浸入氯化钙溶液的封装。藻酸盐分子由甘露糖醛(M)和古洛糖醛酸的(G)和可被Ca被连接2+。凝胶化后,将珠粒悬浮聚-L-赖氨酸(PLL)的解决方案。在此步骤期间,PLL结合G和M中的藻酸盐分子其中规定的胶囊型的膜。胶囊的膜的孔隙率可以通过改变M和PLL浓度,孵育时间和温度来调节。 PLL的结合也依赖于类型和藻酸盐的浓度。交联的离子藻酸盐基质,是不稳定的,在生理环境中或在普通缓冲溶液具有高浓度的磷酸盐和柠檬酸根离子。这些缓冲器可以从藻中提取的Ca 2+和液化的核心。海藻酸钠核心的液化提供空间胶囊细胞运动和增长中。细胞封装在聚阴离子藻酸盐与聚阳离子多聚-L-赖氨酸(APL)是不可透过免疫球蛋白,但有营养素涌入毒素和流出。这些APL的特性使长期苏移植到基因不同的主机后rvival封装的细胞。 Elliott 等人报道注入59年后运转包封猪胰腺细胞中的人类患者的生存。

封装技术可分为微囊(3-800微米)和macroencapsulation(大于1000微米)。微囊比大包囊6更耐用。自从被发现由张医生和他的同事在1964年,微胶囊已被广泛用于生产合成代谢胰岛素的细胞,其他激素和生物活性分子7的封装。这些治疗面临的宿主组织,包括肝纤维化和免疫反应8几个挑战。最初,与生物聚合物的质量的副作用也得到了解决。然而,合成代谢细胞移植仍然发起的副作用,如纤维化,如激素overpr的结果一个专门的腺体之外oduction。

近几十年来,肥胖和2型糖尿病已达到流行病的程度9。成年的人超过30%的全球超重和肥胖10。增加腹内(IAB)脂肪形成增加的慢性炎症的发病率,促进2型糖尿病,心血管疾病,某些癌症和其他并发症11-13。若干条证据表明,与IAB脂肪相关发病可由特定脂肪细胞被避免。最近的研究已经表明,移植皮下脂肪细胞的成IAB区域可以改善代谢,降低肥胖和胰岛素抵抗的啮齿动物体内 14。有效减少肥胖和胰岛素抵抗的已用能够在热15,16的形式耗散能量的产热脂肪细胞相关联。脂肪细胞的产热变形可通过稳定转染来实现基因参与线粒体解偶联质子,如解偶联蛋白1(UCP1)或基因调节UCP1等生热基因15,16的表达。我们最近的研究表明,缺乏乙醛脱氢酶1 A1(ALDH1A1)导致的脂肪IAB的产热重塑,减少肥胖和胰岛素抵抗在这些小鼠17,18。值得注意的是,产热ALDH1A1缺陷的封装(ALDH1A1 – / – )前脂肪细胞介导的肥胖野生型小鼠在IAB脂肪相同的治疗效果,这表明对于治疗的IAB脂肪18新的治疗机会。在实验环境中,封装细胞使研究人员能够研究具有成本效益的方式19项具体细胞群的影响。在这里,我们在肥胖的小鼠模型中进行讨论的产热分解代谢细胞系的封装和其实验室和治疗应用的方法。本协议描述牛逼用于微胶囊的生产( 图1)重稀土元素的阶段:藻酸盐微球( 图1A),形成聚阳离子多聚-L-赖氨酸(PLL)的微珠的表面( 图1B)上的膜,并在除去的形成藻芯( 图1C)。

Protocol

该研究方案经美国俄亥俄州立大学伦理委员会。动物实验批准IACUC协议。所有步骤都在2级生物安全柜,带层流下进行。我们遵循所有标准的安全要求和程序。用于制备微胶囊的微胶囊化技术已经执行如所述17,18。 1.准备材料制备出10毫升2%藻酸钠溶液在高压灭菌生理盐水(0.9%NaCl的水)。准备在生理盐水0.05%PLL溶液。前一天制备这些溶液,并搅拌过夜。使用?…

Representative Results

图1显示了微珠生产的每一个步骤可以在显微镜下进行控制。 图2A示出了如何共同培养的脂肪细胞与包被细胞的一个单层。 图2B是使用脂肪细胞/微胶囊共培养物的定量研究的代表性示例是在第5裂解液描述采用Western blot脂肪细胞进行了分析。包封细胞没有在该实验分析。初级ATGL和β肌动蛋白抗体被用在1:1000稀释。 ATGL的比值β肌动蛋白示的三个独立实验的平均…

Discussion

各种方法已被用于包封细胞,包括干燥,挤出,和乳液19。在该方法中,藻酸盐珠粒通过针挤出,然后涂上PLL和藻酸盐核心会溶解以完成封装。虽然这种方法已使用多年,形成具有所需尺寸和球状珠是仍然具有挑战性。胶囊的大小是高度依赖于褐藻酸钠溶液中,挤出机直径和针尖端和氯化钙溶液20之间的距离的粘度。针尖和氯化钙溶液的表面之间的距离越短,则较?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢詹妮弗彼得罗西诺和大卫DiSilvestro的编辑帮助。这项研究是由美国蛋包饭和奖多项10040042从诺和诺德制药公司,以及由食品创新中心,办公室国际事务中心高级功能食品的研究,并在创业俄勒冈州立大学以及支持由奖号20020728美国国家科学基金会授予EEC-0914790(LJL)。来自国家研究资源中心说明是由奖号R21OD017244(OZ)和UL1RR025755(OSUCCC)支持的项目,由卫生(OD)的主任,国家机构的办公室医学研究和资助和支持的美国国立卫生研究院路线图NCI P30CA16058。内容完全是作者的责任,并不一定代表美国国家研究资源中心和美国国立卫生研究院的官方意见。

Materials

Encapsulation device (VAR V1) Nisco LIN-0042 None
KD scientific syringe pump KD scientific 780100Y None
Olympus microscope  Olympus Optical IX70-S8F2 None
Sodium alginate Sigma MKBP8122V None
Poly-l-lysine hydrobromide (PLL) Sigma 020M5006V None
Calcium chloride Sigma SLBJ2662V None
Sodium citrate tribasic dihydrate Sigma 030M0200 None
Sodium chloride Sigma SLBD2595V None
Mini-PROTEAN TGX Gels Bio-Rad 456-1093 None
ATGL primary antibody (from rabbit) Cell Signaling 2138S None
Secondary anti body (anti rabbit) LI-COR 926-68071 None
Radio-Immunoprecipitation Assay (RIPA) buffer Boston BioProducts D25Y6Z None
Phosphate buffered saline (PBS) Sigma RNBD2893 None
Trypsin Gibco 25200-056 None
Cortizone 10 anti-itch ointment Cortizone 10 C4029138 None
Dulbecco's Modified Eagle Medium (DMEM) Gibco 11965-092 None
Newborn calf serum (CS) Sigma N4762 None
Fetal bovine serum (FBS) Sigma F4135 None
3-Isobutyl-1-methylxanthine (IBMX) Sigma I0516 None
Dexamethasone Sigma D4902 None
Insulin (bovine) Sigma I5879 None
Protease inhibitor cocktail tablets Roche 4693159001 None

References

  1. Vogeli, C., et al. Multiple chronic conditions: prevalence, health consequences, and implications for quality, care management, and costs. Journal of general internal medicine. 22, 391-395 (2007).
  2. Vija, L., et al. Mesenchymal stem cells: Stem cell therapy perspectives for type 1 diabetes. Diabetes & metabolism. 35, 85-93 (2009).
  3. Acarregui, A., Orive, G., Pedraz, J. L., Hernandez, R. M. Therapeutic applications of encapsulated cells. Methods in molecular biology. 1051, 349-364 (2013).
  4. Chang, T. M. Semipermeable Microcapsules. Science. 146, 524-525 (1964).
  5. Elliott, R. B., et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation. 14, 157-161 (2007).
  6. Lim, F., Sun, A. M. Microencapsulated islets as bioartificial endocrine pancreas. Science. 210, 908-910 (1980).
  7. Vos, P., Spasojevic, M., Faas, M. M. Treatment of diabetes with encapsulated islets. Advances in experimental medicine and biology. 670, 38-53 (2010).
  8. Cotton, C. K. Engineering challenges in cell-encapsulation technology. Trends in biotechnology. 14, 158-162 (1996).
  9. Yach, D., Stuckler, D., Brownell, K. D. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nature medicine. 12, 62-66 (2006).
  10. Ng, M., et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 384, 766-781 (2014).
  11. Kissebah, A. H., et al. Relation of body fat distribution to metabolic complications of obesity. The Journal of clinical endocrinology and metabolism. 54, 254-260 (1982).
  12. Bray, G. A., et al. Relation of central adiposity and body mass index to the development of diabetes in the Diabetes Prevention Program. The American journal of clinical nutrition. 87, 1212-1218 (2008).
  13. Klein, J., et al. What are subcutaneous adipocytes really good for. Experimental dermatology. 16, 45-70 (2007).
  14. Tran, T. T., Yamamoto, Y., Gesta, S., Kahn, C. R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell metabolism. 7, 410-420 (2008).
  15. Seale, P., Kajimura, S., Spiegelman, B. M. Transcriptional control of brown adipocyte development and physiological function–of mice and men. Genes & development. 23, 788-797 (2009).
  16. Kozak, L. P. Genetic variation in brown fat activity and body weight regulation in mice: lessons for human studies. Biochimica et biophysica acta. 1842, 370-376 (2014).
  17. Zhang, X., He, H., Yen, C., Ho, W., Lee, L. J. A biodegradable, immunoprotective, dual nanoporous capsule for cell-based therapies. Biomaterials. 29, 4253-4259 (2008).
  18. Yang, F., et al. The prolonged survival of fibroblasts with forced lipid catabolism in visceral fat following encapsulation in alginate-poly-L-lysine. Biomaterials. 33, 5638-5649 (2012).
  19. Chang, T. M. Artificial cells with emphasis on bioencapsulation in biotechnology. Biotechnology annual review. 1, 267-295 (1995).
  20. Chang, T. M. Hybrid artificial cells: microencapsulation of living cells. ASAIO journal. 38, 128-130 (1992).
  21. Koo, J., Chang, T. M. Secretion of erythropoietin from microencapsulated rat kidney cells: preliminary results. The International journal of artificial organs. 16, 557-560 (1993).
  22. Weidenauer, U., Bodmer, D., Kissel, T. Microencapsulation of hydrophilic drug substances using biodegradable polyesters. Part I: evaluation of different techniques for the encapsulation of pamidronate di-sodium salt. Journal of microencapsulation. 20, 509-524 (2003).
  23. Smidsrod, O., Skjak-Braek, G. Alginate as immobilization matrix for cells. Trends in biotechnology. 8, 71-78 (1990).
  24. Lewinska, D., Rosinski, S., Werynski, A. Influence of process conditions during impulsed electrostatic droplet formation on size distribution of hydrogel beads. Artificial cells, blood substitutes, and immobilization biotechnology. 32, 41-53 (2004).
  25. Chan, E. S., Lee, B. B., Ravindra, P., Poncelet, D. Prediction models for shape and size of ca-alginate macrobeads produced through extrusion-dripping method. Journal of colloid and interface science. 338, 62-72 (2009).
  26. Bhujbal, S. V., Paredes-Juarez, G. A., Niclou, S. P., de Vos, P. Factors influencing the mechanical stability of alginate beads applicable for immunoisolation of mammalian cells. Journal of the behavior of biomedical materials. 37, 196-208 (2014).
  27. Gushchina, L. V., Yasmeen, R., Ziouzenkova, O. Moderate vitamin A supplementation in obese mice regulates tissue factor and cytokine production in a sex-specific manner. Archives of biochemistry and biophysics. 539, 239-247 (2013).
  28. Ziouzenkova, O., et al. Retinaldehyde represses adipogenesis and diet-induced obesity. Nature. 13, 695-702 (2007).
  29. Yasmeen, R., Jeyakumar, S. M., Reichert, B., Yang, F., Ziouzenkova, O. The contribution of vitamin A to autocrine regulation of fat depots. Biochimica et biophysica acta. 1821, 190-197 (2012).
  30. Liu, W., et al. miR-133a regulates adipocyte browning in vivo. PLoS genetics. 9, e1003626 (2013).
  31. Rao, R. R., et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell. 157, 1279-1291 (2014).
  32. Kir, S., et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 513, 100-104 (2014).
check_url/kr/52806?article_type=t

Play Video

Cite This Article
Xu, L., Shen, Q., Mao, Z., Lee, L. J., Ziouzenkova, O. Encapsulation Thermogenic Preadipocytes for Transplantation into Adipose Tissue Depots. J. Vis. Exp. (100), e52806, doi:10.3791/52806 (2015).

View Video