Summary

不死化ソートB細胞からの組換えヒトIgGモノクローナル抗体の作製

Published: June 05, 2015
doi:

Summary

Synthesis of human monoclonal antibodies is the first step in studies aimed at unraveling the pathophysiological mechanisms of auto-antibody-mediated immune responses. We have developed a protocol to generate recombinant human immunoglobulin G (IgG) monoclonal antibodies from blood sorted B cells, including B-cell isolation, antibody cloning and in vitro synthesis.

Abstract

Finding new methods for generating human monoclonal antibodies is an active research field that is important for both basic and applied sciences, including the development of immunotherapeutics. However, the techniques to identify and produce such antibodies tend to be arduous and sometimes the heavy and light chain pair of the antibodies are dissociated. Here, we describe a relatively simple, straightforward protocol to produce human recombinant monoclonal antibodies from human peripheral blood mononuclear cells using immortalization with Epstein-Barr Virus (EBV) and Toll-like receptor 9 activation. With an adequate staining, B cells producing antibodies can be isolated for subsequent immortalization and clonal expansion. The antibody transcripts produced by the immortalized B cell clones can be amplified by PCR, sequenced as corresponding heavy and light chain pairs and cloned into immunoglobulin expression vectors. The antibodies obtained with this technique can be powerful tools to study relevant human immune responses, including autoimmunity, and create the basis for new therapeutics.

Introduction

この論文の目的は、具体的にヒト末梢血単核細胞(PBMC)から得られたヒトIgGモノクローナル抗体を作製し、特徴づけるための方法を記述することです。

ヒト抗体を研究するための関心は、研究のさまざまな分野に成長しました。特に、多くの研究グループは、自己抗体によって引き起こされる病理1-3に興味を持っています。我々は、クローン化され、1病原性の自己抗体を特徴としています。自己抗体の研究は、競合抗体4を使用して、 例えば 、それらの標的を同定し、治療戦略を開発するのに役立ちます。また、ヒト抗体の研究はまた、露出して特定の病原体6または研究するためにどのに耐性となった個体の抗体プロフィールを特徴付けるために、ワクチン接種後5免疫応答を評価するために、 すなわち 、研究の他の分野に関心のものであることができます抗体がです天然のレパートリー7,12。

いくつかの技術が、組換えヒトモノクローナル抗体8-12を生成するために開発されています。これらのほとんどは、ファージディスプレイおよびB細胞の不死化を使用します。ファージディスプレイの使用は、広範囲に新13抗体の検出に適用されています。しかし、となるヒト免疫グロブリンの重鎖および軽鎖対は、プロセス中に解離していること、すなわち、主要な欠点​​を有します。ヒトB細胞またはEBV形質転換とハイブリドーマの生産は、この欠点を克服します。

我々は、Toll様受容体9(TLR-9)、6,12を介して、ポリクローナルB細胞刺激と組み合わせたEBVで胸腺B細胞の感染を使用します。

本稿では、in vitroでの抗体生成にPBMC単離からのすべてのステップの完全な概要と、詳細に我々は、IgGヒト抗体の開発のために使用する技術が記載されています。このこのプロトコルは、ヒトIgGのプロファイルのいずれかのタイプの分析のために使用することができます。我々の研究室では、IgG抗体を産生するB細胞が正常にソートした後のPBMCの残りの部分から分離されました。五8は 、マルチウェルプレートに播種し、単一のB細胞のクローン性増殖のために、EBV及びTLR-9活性化によって不死化することができるB細胞を選別しました。フィーダー細胞としては、ヒト胎児肺組織からの線維芽細胞は、不死化B細胞の可視化を容易にする細胞系WI38が、使用されています。これらのB細胞から、免疫グロブリンの重鎖および軽鎖の配列を、PCRにより得ることができる、および抗体」遺伝子は、免疫グロブリンGを発現ベクター中にクローン化し、 インビトロで生成しました。この技術を用いて、ドナーに見られる全く同じ抗体配列を有する単一の抗体を試験することができます。

Protocol

インフォームドコンセントは、研究の参加者から得ました。研究は施設内倫理委員会によって承認されました。 末梢血単核細胞(PBMC)の単離1。 遠心分離機できるだけ早く血液抽出後の15分間、900×gで参加者のヘパリン化血液の25ミリリットル、。少ない血液がある場合は、それに応じて試薬を縮小。フード内のすべての次の手順を実行します。 きれいな?…

Representative Results

CD22およびIgG陽性細胞を染色した後の選別ゲートは、 図1に示されているこの画像では二重陽性細胞の面積- 。IgG抗体を産生するB細胞が-別のチューブ内のすべてのこれらの細胞を選別するために選択されます。分析では、全PBMCの約1%が、この二重陽性集団に対応しています。得られた選別された細胞の数は、セクション1で得られた細胞の数に依存します。 …

Discussion

本稿では、ヒトPBMCからのIgG抗体の生成のためのすべてのステップを詳細に示します。このプロトコルは、以前に公表された技術を超えるいくつかの利点が含まれています。利点の一つは、産生された抗体は、B細胞クローンの元の対に対応する重鎖および軽鎖を保つことです。 IgG抗体の同定は、ヒトドナーの任意のタイプで行うことができ、ワクチン接種5による免疫応答の悪化を必?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

研究契約ミゲルServet(ISCIII CD14 / 00032)から(GN-G。)。 (CH)の科学研究「トランスレーショナル神経科学プログラム研究科 "のオランダ機構(022005019)からフェローシップ。

プリンセスベアトリクスフォン(プロジェクトWAR08-12)と協会フランセーズcontreレミオパシーからの補助金(PM-M。);ならびに科学研究費オランダ機構(916.10.148)のVeniフェローシップによるオランダの脳財団のフェローシップ(FS2008(1)-28)とプリンセスビアトリクスフォン(プロジェクトWAR08-12)(MLへ)。

我々は、フローサイトメトリーによる選別B細胞の彼女の助けのためJozienヤスパースに感謝します。

Materials

Histopaque-1077  Sigma-Aldrich 10771 solution containing polysucrose and sodium diatrizoate
FACSAria II cell sorter  BD Biosciences 
96 U-bottom micro well plates  Costar 3799
Advanced Roswell Park Memorial Institute (RPMI) 1640 medium  Gibco, Life Technologies 12633-020
30% v/v EBV-containing supernatant of the B95-8 cell line   ATCC CRL-1612 3.4 x 108 copies/ml
CpG2006  Invivogen ODN 7909
Wi38 cells  Sigma-Aldrich 90020107
Interleukin-2 Roche  10799068001
ELISA plates Greiner Bio-One, Microlon 655092
AffiniPure F(ab')2 Fragment Goat Anti-Human IgG, Fcγ Fragment Specific (unconjugated) Jackson ImmunoResearch 109-006-008
4% non-fat dry milk (Blotting Grade Blocker)  Biorad 170-6404
Human IgG  Sigma I 2511 HUMAN IgG purified Immunoglobulin, 5.6 mg/ml
Goat F(ab)2 antihuman IgG Fcγ (conjugated with peroxidase (PO)) Jackson ImmunoResearch 109-036-008
ELISA reader (Perkin Elmer 2030)  Perkin Elmer  2030-0050
Peroxidase-conjugated AffiniPure Rabbit Anti-Human IgM, Fc5µ  Jackson ImmunoResearch 309-035-095
SuperScript III Cells Direct cDNA Synthesis System  Invitrogen  18080-200
Applied Biosystems (ABI) GeneAm PCR System 2700 Applied Biosystems
High Pure RNA Isolation Kit  Roche 11828665001
Reverse transcription system kit  Promega A3500
Recombinant Taq DNA Polymerase TAKARA R001A
Primers (2μl) Sigma
Ultrapure Agarose  Invitrogen 16500-500
100 bp ladder Invitrogen 15628-019
Quantity One 4.5.2 (Gel Doc 2000) Biorad 170-8100
QIAquick PCR purification kit QIAGEN 28106
BigDye Terminator v3.1 cycle sequencing kit  Applied Biosystems 4337455
0.1 ml reaction plate (MicroAMP Optical 96-well) Applied Biosystems 4346906
Genetic analyser ABI300  Applied Biosystems 4346906
DH5α competent cells (E. coli) Invitrogen 18263-012
pFUSEss-CHIg-hG1 (4493 bp) Invivogen pfusess-hchg1
pFUSEss-CHIg-hG4 (4484 bp)  Invivogen pfusess-hchg4
pFUSE2ss-CLIg-hk (3875 bp) Invivogen pfuse2ss-hclk
pFUSE2ss-CLIg-hl2 (3883 bp)  Invivogen pfuse2ss-hcll2
SOC medium Invitrogen 15544-034
LB-based agar medium supplemented with Zeocin (Fast-Media Zeo Agar) Invivogen fas-zn-s
Terrific Broth (TB)-based liquid medium supplemented with Zeocin (Fast-Media Zeo TB) Invivogen fas-zn-l
DNA Miniprep kit  Omega Bio Technology D6942-02
Nanodrop (ND1000 Spectrophotometer) Nanodrop
LB-based agar medium supplemented with Blasticidin (Fast-Media Blast Agar) Invivogen fas-bl-s
Terrific Broth (TB)-based liquid medium supplemented with Blasticidin (Fast-Media Blast TB) Invivogen fas-bl-l
EcoRI New England Biolabs R0101S 20,000 U/ml, in 10x NEBuffer EcoRI
NheI New England Biolabs R0131S 10,000 U/ml, in 10x NEBuffer 2.1
2-Log DNA ladder New England Biolabs N3200S 0.1-10.0 kb, 1,000 μg/ml
XmaI New England Biolabs R0180S 10,000 U/ml, in 10x CutSmart Buffer 
BsiWI New England Biolabs R0553S 10,000 U/ml, in 10x NEBuffer 3.1
AvrII New England Biolabs R0174S 5,000 U/ml, in 10x CutSmart Buffer 
FastAP Thermosensitive Alkaline Phosphatase Thermo Scientific EF0651 1 U/µL, in 10x FastAP Buffer
DH5α competent cells  Invitrogen 18263-012
PE Mouse Anti-Human IgG BD Pharmingen 555787
anti-CD22, PerCP-Cy5.5, Clone: HIB22 Fisher scientific BDB563942
QIAprep Spin Miniprep Kit  QIAGEN 27106
BigDye Terminator v3.1 Applied Biosystems 4337455

References

  1. Vrolix, K., et al. Clonal heterogeneity of thymic B cells from early-onset myasthenia gravis patients with antibodies against the acetylcholine receptor. J Autoimmun. 52, 101-112 (2014).
  2. Yamashita, M., Katakura, Y., Shirahata, S. Recent advances in the generation of human monoclonal antibody. Cytotechnology. 55 (2-3), 55-60 (2007).
  3. Pereira, K. M., Dellavance, A., Andrade, L. E. The challenge of identification of autoantibodies specific to systemic autoimmune rheumatic diseases in high throughput operation: Proposal of reliable and feasible strategies. Clin Chim Acta. 437, 403-410 (2014).
  4. Losen, M., et al. Treatment of myasthenia gravis by preventing acetylcholine receptor modulation. Ann N Y Acad Sci. 1132, 174-179 (2008).
  5. Smith, K., et al. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat Protoc. 4 (3), 372-384 (2009).
  6. Fraussen, J., et al. A novel method for making human monoclonal antibodies. J Autoimmun. 35 (2), 130-134 (2010).
  7. Traggiai, E., et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med. 10 (8), 871-875 (2004).
  8. Fraussen, J., et al. Autoantigen induced clonal expansion in immortalized B cells from the peripheral blood of multiple sclerosis patients. J Neuroimmunol. 261 (1-2), 98-107 (2013).
  9. Yamashita, M., et al. Different individual immune responses elicited by in vitro immunization. Cytotechnology. 40 (1-3), 161-165 (2002).
  10. Hui-Yuen, J., Koganti, S., Bhaduri-McIntosh, S. Human B cell immortalization for monoclonal antibody production. Methods Mol Biol. 1131, 183-189 (2014).
  11. Tiller, T., et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods. 329 (1-2), 112-124 (2008).
  12. Lanzavecchia, A., Corti, D., Sallusto, F. Human monoclonal antibodies by immortalization of memory B cells. Curr Opin Biotechnol. 18 (6), 523-528 (2007).
  13. Traggiai, E. Immortalization of human B cells: analysis of B cell repertoire and production of human monoclonal antibodies. Methods Mol Biol. 901, 161-170 (2012).
  14. Strober, W., et al. Monitoring cell growth. Curr Protoc Immunol / edited by. John E. Coligan … [et al.]. Appendix 3, Appendix 3A (2001).
  15. Ibrahim, S. F., van den Engh, G. Flow cytometry and cell sorting. Adv Biochem Eng Biotechnol. 106, 19-39 (2007).
  16. Leith, J. T., Padfield, G., Faulkner, L. E., Quinn, P., Michelson, S. Effects of feeder cells on the X-ray sensitivity of human colon cancer cells. Radiother Oncol. 21 (1), 53-59 (1991).
  17. Hui-Yuen, J., McAllister, S., Koganti, S., Hill, E., Bhaduri-McIntosh, S. Establishment of Epstein-Barr virus growth-transformed lymphoblastoid cell lines. J Vis Exp. (57), 3321 (2011).
  18. Smith, L. M., et al. Fluorescence detection in automated DNA sequence analysis. Nature. 321 (6071), 674-679 (1986).
check_url/kr/52830?article_type=t

Play Video

Cite This Article
Nogales-Gadea, G., Saxena, A., Hoffmann, C., Hounjet, J., Coenen, D., Molenaar, P., Losen, M., Martinez-Martinez, P. Generation of Recombinant Human IgG Monoclonal Antibodies from Immortalized Sorted B Cells. J. Vis. Exp. (100), e52830, doi:10.3791/52830 (2015).

View Video