Summary

免疫共沉淀鼠标MX1蛋白与流感病毒核蛋白

Published: April 21, 2015
doi:

Summary

This co-immunoprecipitation protocol allows to study the interaction between the influenza A virus nucleoprotein and the antiviral Mx1 protein in human cells. The protocol emphasizes the importance of N-ethylmaleimide for successful co-immunoprecipitation of Mx1 and influenza A virus nucleoprotein.

Abstract

Studying the interaction between proteins is key in understanding their function(s). A very powerful method that is frequently used to study interactions of proteins with other macromolecules in a complex sample is called co-immunoprecipitation. The described co-immunoprecipitation protocol allows to demonstrate and further investigate the interaction between the antiviral myxovirus resistance protein 1 (Mx1) and one of its viral targets, the influenza A virus nucleoprotein (NP). The protocol starts with transfected mammalian cells, but it is also possible to use influenza A virus infected cells as starting material. After cell lysis, the viral NP protein is pulled-down with a specific antibody and the resulting immune-complexes are precipitated with protein G beads. The successful pull-down of NP and the co-immunoprecipitation of the antiviral Mx1 protein are subsequently revealed by western blotting. A prerequisite for successful co-immunoprecipitation of Mx1 with NP is the presence of N-ethylmaleimide (NEM) in the cell lysis buffer. NEM alkylates free thiol groups. Presumably this reaction stabilizes the weak and/or transient NP–Mx1 interaction by preserving a specific conformation of Mx1, its viral target or an unknown third component. An important limitation of co-immunoprecipitation experiments is the inadvertent pull-down of contaminating proteins, caused by nonspecific binding of proteins to the protein G beads or antibodies. Therefore, it is very important to include control settings to exclude false positive results. The described co-immunoprecipitation protocol can be used to study the interaction of Mx proteins from different vertebrate species with viral proteins, any pair of proteins, or of a protein with other macromolecules. The beneficial role of NEM to stabilize weak and/or transient interactions needs to be tested for each interaction pair individually.

Introduction

粘病毒性(MX)蛋白质是抗病毒病原体的先天免疫防御的重要组成部分。这些蛋白质是由I型和III型干扰素诱导的大dynamin上样GTP酶。相应的Mx基因是存在于几乎所有的脊椎动物中的一个或多个拷贝和它们的基因产物抑制多种病毒,包括正粘病毒科例如 ,流感病毒), 弹状例如 ,水泡性口炎病毒), 布尼亚病毒科 ,拉克罗斯病毒)和逆转录病毒例如,人免疫缺陷病毒-1)1-4。目前还不清楚这些蛋白质如何认识这种病毒浩如烟海,没有任何明显的共享主序列基序在这些病毒。的Mx蛋白的相互作用与病毒指标分析,可能涉及高阶配合其他宿主细胞的因素,将有助于了解的分子机制吨帽子进化的病毒和其宿主之间的军备竞赛。

哺乳动物的Mx蛋白和病毒靶之间的相互作用已经研究最广泛的用于人类的MxA。人类的MxA能抑制多种病毒,包括正粘病毒A型流感和Thogoto病毒的复制。 MxA蛋白结合的Thogoto病毒核蛋白复合物(vRNPs),从而防止它们的核条目,这导致感染5的块。此MxA蛋白和Thogoto病毒vRNPs之间相互作用已被证明具有共沉淀和免疫共沉淀实验6-9。怎样的Mx蛋白质阻碍A型流感病毒是不太清楚。一个主要的问题是,它不是简单的证明的MX蛋白和流感基因产物之间的相互作用。其中一份报告证实人类的MxA和NP蛋白质之间的相互作用在A型流感病毒感染的细胞10。这种相互作用可能仅通过共immunopr显示ecipitation如果细胞已用裂解之前交联试剂硫代(琥珀酰亚胺丙酸酯),这表明该相互作用是暂时和/或弱。最近的研究已经表明,不同甲型流感毒株的差分的Mx灵敏度由NP蛋白11,12的原点来确定。本着这一精神,甲型流感病毒可以从一定程度控制的Mx通过突变的具体残留在NP蛋白13逃跑。这表明,甲型流感病毒对主机的Mx的主要目标是NP蛋白质,最有可能NP组装vRNP复合物。然而,这些较近期的研究中证明了流感的NP或vRNPs,要么人类的MxA或鼠标MX1之间的相互作用。

最近我们发现,对于第一次,流感NP和鼠标MX1蛋白具有优化免疫共沉淀协议14,其在此处详细描述之间的相互作用。在一般情况下,共同-i的mmunoprecipitation是最常用的生化方法来调查蛋白质 – 蛋白质相互作用之一。这种技术通常优于其他技术, 例如,酵母双杂交,因为它允许研究蛋白质-蛋白质相互作用在其天然环境中。共免疫沉淀,可以进行上内源性表达的蛋白质,如果可用的抗体针对感兴趣的蛋白。备选地,感兴趣的蛋白质可以表达的通过转染或感染的细胞和亲和标记可被使用。除了上述的优点,所描述的共免疫沉淀协议允许弱和/或瞬态蛋白质相互作用的检测。在这个优化的协议的主要成分是添加N-乙基马来酰亚胺(NEM)的细胞裂解缓冲液中。 NEM是一种烷基化试剂,与游离硫醇基团,例如存在于半胱氨酸反应,在pH为6.5-7.5,以形成稳定的硫代酯( 图1)。在较高的pH值,NEM也可以与氨基反应或进行水解15。 NEM通常用于阻断游离硫醇基团,以防止二硫键的形成或抑制酶活性。例如,NEM常被用来阻止desumoylating酶,它们是半胱氨酸蛋白酶。在所描述的免疫共沉淀的协议,NEM最初包含在裂解缓冲液,因为它已被报道,流感蛋白的蛋白修饰可以影响病毒蛋白16之间的相互作用。出乎意料的是,在加入NEM的证明是关键文件通过共免疫沉淀流感NP和鼠标MX1之间的相互作用。目前还不清楚为什么加NEM是至关重要检测NP-MX1互动。可能的交互过瞬态和/或弱。 NEM可以稳定的相互作用, 例如,通过保留MX1的特定构象,病毒蛋白或甚至一个未知第三COMPO新界东北堆填区。 NEM这种稳定作用已被观察到之前, 例如,对于核苷酸还原酶M1和其抑制剂吉西他滨(F2dC)17之间的相互作用。 MX1和NP都含有多个半胱氨酸残基可通过NEM进行修改。例如,最近的一项研究雷尼等人证明,无茎的MxA-变种包含三个溶剂暴露半胱氨酸残基可被碘乙酰胺进行修改。突变这些残基对丝氨酸没有影响的MxA的酶活性,但阻止二硫键介导的聚集18。由于这些半胱氨酸保守MX1,这表明在MX1类似的半胱氨酸可以通过NEM并因此影响其构象或溶解性进行修改。此外,NEM还可能影响MX1,这对于MX1的抗流感活性所必需的GTP酶活性,并由此稳定MX1和NP之间的相互作用。然而,NEM上的GTP酶ACTI有直接的影响MX1的VITY是不可能的,因为NEM还需要检测流感NP和GTP酶的MX1蛋白14的无活性突变体之间的相互作用。很明显,需要更多的研究来解开NEM对NP-MX1的互动效果。

总之,所描述的共免疫沉淀协议允许研究抗病毒药MX1蛋白及其病毒靶,流感的NP蛋白质之间的相互作用。该协议也可以用来研究依赖于特定蛋白质的构象的稳定化等弱或瞬时相互作用。依赖于特定的构象的蛋白质-蛋白质相互作用之前已经描述的, 例如,对于钙结合蛋白如钙调蛋白19。最后,NEM的有益作用,也可以在该检测蛋白质 – 蛋白质相互作用,例如共沉淀测定法等方法使用。

Protocol

注意:下面的转染和共免疫沉淀的协议被建立用于一个9厘米培养皿格式。其他格式也是可能的缩放协议之后。 1.播种人胚肾(HEK)293T细胞转染每9厘米培养皿1.2×10 6个细胞的12ml Dulbecco改性Eagle培养基(DMEM)中的补充有10%胎牛血清,2mM的L-谷氨酰胺,0.4mM的丙酮酸钠之前种子的HEK293T细胞的一天, 0.1mM非必需氨基酸,100U / ml青霉素和0.1mg / ml链霉素。 生长?…

Representative Results

N-乙基马来酰亚胺是可用于不可逆地修饰的游离巯基, 例如 ,以抑制半胱氨酸蛋白酶(见图1)的有机化合物。 抗病毒MX1蛋白抑制A型流感病毒的复制与病毒核蛋白的相互作用。这里描述的优化免疫共沉淀协议允许研究这个NP-MX1互动。转染HEK293T细胞与抗病毒MX1蛋白在流感NP蛋白的存在或不存在的表达载体。接着,将NP蛋白是从总细胞裂解物被拉?…

Discussion

研究抗病毒药蛋白及其病毒靶之间的相互作用是了解这些蛋白质的抗病毒机制的细节非常重要的。这可以给新的见解如何病毒及其宿主共同进化,并依据新的抗病毒策略的发展。此处所描述的优化的共免疫沉淀协议允许研究小鼠MX1蛋白及其病毒靶,流感的NP蛋白质之间的相互作用。这个协议的最重要的方面是,在裂解缓冲液中加入NEM的,作为对NP-MX1相互作用是检测不到的,在缺少NEM( 图3)<…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由FWO-VLAANDEREN,在IOF项目IOF10 / StarTT / 027和根特大学特别研究基金BOF12 / GOA / 014的支持。

Materials

DMEM high glucose Gibco 52100-047
N-Ethylmaleimide Sigma E-3876 Toxic
Igepal CA-630 Sigma I-30212 also known as NP40
Protease Inhibitor Cocktail Roche 11 873 580 001
anti-NP monoclonal antibody NIH Biodefense and Emerging Infections Research Resources Repository NR-4282 ascites blend of clones A1 and A3
anti-RNP polyclonal serum NIH Biodefense and Emerging Infections Research Resources Repository NR-3133 directed against A/Scotland/840/74 (H3N2)
Protein G Sepharose 4FF GE Healthcare 17-0618-01
Hyperfilm ECL 18 x 24 cm GE Healthcare 28-9068-36
ECL Western Blotting Substrate Pierce 32106

References

  1. Verhelst, J., Hulpiau, P., Saelens, X. Mx proteins: antiviral gatekeepers that restrain the uninvited. Microbiol Mol Biol Rev. 77 (4), 551-566 (2013).
  2. Goujon, C., et al. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature. 502 (7472), 559-562 (2013).
  3. Kane, M., et al. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature. 502 (7472), 563-566 (2013).
  4. Liu, Z., et al. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe. 14 (4), 398-410 (2013).
  5. Kochs, G., Haller, O. Interferon-induced human MxA GTPase blocks nuclear import of Thogoto virus nucleocapsids. Proc Natl Acad Sci U S A. 96 (5), 2082-2086 (1999).
  6. Flohr, F., Schneider-Schaulies, S., Haller, O., Kochs, G. The central interactive region of human MxA GTPase is involved in GTPase activation and interaction with viral target structures. FEBS Lett. 463 (1-2), 24-28 (1999).
  7. Kochs, G., Haller, O. GTP-bound human MxA protein interacts with the nucleocapsids of Thogoto virus (Orthomyxoviridae). J Biol Chem. 274 (7), 4370-4376 (1999).
  8. Mitchell, P. S., et al. Evolution-guided identification of antiviral specificity determinants in the broadly acting interferon-induced innate immunity factor MxA. Cell Host Microbe. 12 (4), 598-604 (2012).
  9. Patzina, C., Haller, O., Kochs, G. Structural requirements for the antiviral activity of the human MxA protein against Thogoto and influenza A virus. J Biol Chem. 289 (9), 6020-6027 (2014).
  10. Turan, K., et al. Nuclear MxA proteins form a complex with influenza virus NP and inhibit the transcription of the engineered influenza virus genome. Nucleic Acids Res. 32 (2), 643-652 (2004).
  11. Dittmann, J., et al. Influenza A virus strains differ in sensitivity to the antiviral action of Mx-GTPase. J Virol. 82 (7), 3624-3631 (2008).
  12. Zimmermann, P., Manz, B., Haller, O., Schwemmle, M., Kochs, G. The viral nucleoprotein determines Mx sensitivity of influenza A viruses. J Virol. 85 (16), 8133-8140 (2011).
  13. Manz, B., et al. Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein. PLoS Pathog. 9 (3), e1003279 (2013).
  14. Verhelst, J., Parthoens, E., Schepens, B., Fiers, W., Saelens, X. Interferon-inducible protein Mx1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex assembly. J Virol. 86 (24), 13445-13455 (2012).
  15. Brewer, C. F., Riehm, J. P. Evidence for possible nonspecific reactions between N-ethylmaleimide and proteins. Anal Biochem. 18 (2), 248-255 (1967).
  16. Wu, C. Y., Jeng, K. S., Lai, M. M. The SUMOylation of matrix protein M1 modulates the assembly and morphogenesis of influenza A virus. J Virol. 85 (13), 6618-6628 (2011).
  17. Chen, Z., Zhou, J., Zhang, Y., Bepler, G. Modulation of the ribonucleotide reductase M1-gemcitabine interaction in vivo by N-ethylmaleimide. Biochem Biophys Res Commun. 413 (2), 383-388 (2011).
  18. Rennie, M. L., McKelvie, S. A., Bulloch, E. M., Kingston, R. L. Transient dimerization of human MxA promotes GTP hydrolysis, resulting in a mechanical power stroke. Structure. 22 (10), 1433-1445 (2014).
  19. Gifford, J. L., Walsh, M. P., Vogel, H. J. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J. 405 (2), 199-221 (2007).
  20. Gallagher, S., Chakavarti, D. Immunoblot analysis. J Vis Exp. (16), (2008).
  21. Eslami, A., Lujan, J. Western blotting: sample preparation to detection. J Vis Exp. (44), (2010).
  22. Pavlovic, J., Haller, O., Staeheli, P. Human and mouse Mx proteins inhibit different steps of the influenza virus multiplication cycle. J Virol. 66 (4), 2564-2569 (1992).
check_url/kr/52871?article_type=t

Play Video

Cite This Article
Verhelst, J., De Vlieger, D., Saelens, X. Co-immunoprecipitation of the Mouse Mx1 Protein with the Influenza A Virus Nucleoprotein. J. Vis. Exp. (98), e52871, doi:10.3791/52871 (2015).

View Video