Summary

Генерация масштабируемой, металлик высоких-Aspect Ratio нанокомпозитов в биологическом жидкой среде

Published: July 08, 2015
doi:

Summary

Здесь мы приводим протокол к синтезу новых, высоких соотношение сторон биокомпозитов в биологических условиях и в жидких средах. В биокомпозиты шкале от нанометров до микрометров в диаметре и длиной, соответственно. Наночастицы меди (ЧАЭС) и сульфата меди в сочетании с цистина являются ключевыми компонентами для синтеза.

Abstract

Цель этого протокола заключается в описании синтез двух новых биокомпозитов с высокой соотношением сторон структур. В биокомпозиты состоят из меди и цистина, либо с наночастицами меди (ЧАЭС) или медного купороса, способствующего металлический компонент. Синтез проводят в жидкости в биологических условиях (37 ° C) и самоорганизующихся композитов форме после 24 часов. После образования эти композиты обладают высокой стабильностью в обоих жидких сред и в сухом виде. Композиты масштабироваться от нано- до микро- диапазон в длину, и от нескольких микрон до 25 нм в диаметре. Выбросов поле сканирующей электронной микроскопии с энергетической дисперсии рентгеновской спектроскопии (EDX) показал, что сера присутствует в НП-производных линейных структур, в то время как она отсутствовала из исходного материала CNP, таким образом подтверждая цистина в качестве источника серы в конечных нанокомпозитов , Во время синтеза этих линейных нано- и микро-композитов, разнообразных длин улuctures формируется в синтез судна. Ультразвуком жидкую смесь после синтеза был продемонстрирован, чтобы помочь в контроле средний размер структур путем уменьшения средней длины с увеличением времени обработки ультразвуком. Поскольку образованные структуры обладают высокой стабильностью, не агломерации, и образуются в жидкой фазе, центрифугирование также может быть использован для помощи в концентрации и сегрегации, образованные композитов.

Introduction

Copper is a highly reactive metal that in the biological world is essential in some enzyme functions 1,2, but in higher concentrations is potently toxic including in the nanoparticulate form 3,4. Concern over copper toxicity has become more relevant as CNPs and other copper-based nanomaterials are utilized, due to the increased surface area/mass for nanostructures. Thus, even a small mass of copper, in nanoparticle form, could cause local toxicity due to its ability to penetrate the cell and be broken down into reactive forms. Some biological species can complex with and chelate metal ions, and even incorporate them into biological structures as has been described in marine mussels 5. In studying the potential toxic effects of nanomaterials 4, it was discovered that over time, and under biological conditions used for typical cell culturing (37 °C and 5% CO2), stable copper biocomposites could be formed with a high-aspect ratio (linear) structure.

By a process of elimination, the initial discovery of these linear biocomposites, which occurred in complete cell culture media, was simplified to a defined protocol of essential elements needed for the biocomposites to self-assemble. Self-assembly of two types of highly linear biocomposites was discovered to be possible with two starting metal components: 1) CNPs and 2) copper sulfate, with the common biological component being cystine. Although more complex, so called “urchin” and “nanoflower” type copper-containing structures with nanoscale and microscale features have been previously reported, these were produced under non-biological conditions, such as temperatures of 100 °C or greater 6-8. To our knowledge, synthesis of individual, linear copper-containing nanostructures that are scalable in liquid phase under biological conditions has not been previously described.

One of the starting materials utilized for synthesis of nanocomposites, namely CNPs, has been reported previously to be very toxic to cells 4. It has recently been reported that after the nanocomposites are formed, these structures are less toxic on a per mass basis than the starting NPs 9. Thus, the synthesis described here may be derived from a biological and biochemical reaction that has utility in stabilizing reactive copper species, both in the sense of transforming the NP form into larger structures and in producing composites less toxic to cells.

In contrast to many other nanomaterial forms which are known to aggregate or clump upon interaction with biological liquid media 10,11, once formed, the highly linear composites described here avoid aggregation, possibly due to a redistribution of charge which has been previously reported 9. As detailed in the current work, this avoidance of aggregation is convenient for the purposes of working with the structures once formed for at least 3 reasons: 1) composite structures once formed may be concentrated using centrifugation and then easily dispersed again using vortex mixing; 2) formed structures can be decreased in average size by sonication for different periods of time; and 3) the formed linear structures may provide an additional tool for avoiding the recently described “coffee ring effect” 12 and thus provide a dopant for creating more evenly distributed coatings of materials, especially those containing spherical particulates.

Protocol

1. Планирование экспериментов Определить объем медных нанокомпозитов, необходимых для синтеза. На этой основе, выбрать количество мелких флаконах объемом 25 см (2), или больших колбах, как указано ниже, в подготовке материалов. Для этого синтеза, использовать 37 ° C инкубат…

Representative Results

На рисунке 1 показана блок-схема Схема стадий синтеза с образованием линейных биокомпозитов, описанные в данной работе. CNPS или сульфат меди в качестве исходных материалов в сочетании с стерильной водой, чтобы образовать 2 мг / мл раствора в этот раствор смешивают и обрабатывают…

Discussion

При оценке потенциальных токсических эффектов наноматериалов, включая ЧАЭС, было отмечено, что в течение длительного срока, ЧАЭС были преобразованы из первоначально более дисперсной распределения частиц в большей, агрегированной форме (рисунок 2). В некоторых случаях, эти выс…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge the technical assistance of Alfred Gunasekaran in electron microscopy studies at the Institute of Micromanufacturing at Louisiana Tech University, and Dr. Jim McNamara for assistance with additional microscopy studies. The work described was supported in part by Louisiana board of Regents PKSFI Contract No. LEQSF (2007-12)-ENH-PKSFI-PRS-04 and the James E. Wyche III Endowed Professorship from Louisiana Tech University (to M.D.).

Materials

Mini Vortexer VWR (https://us.vwr.com) 58816-121
CO2 Incubator Model # 2425-2 VWR (https://us.vwr.com) Contact vendor Current model calalog # 98000-360
Eppendorf Centrifuge (Refrigerated Microcentrifuge) Labnet (http://labnetinternational.com/) C2500-R Model Prism R
Cell Culture Centrifuge Model Z323K Labnet (http://labnetinternational.com/) Contact vendor Current model Z206A catalog # C0206-A
Sonicator (Ultrasonic Cleaner) Branson Ultrasonics Corporation (http://www.bransonic.com/) 1510R-MTH
Balance Sartorius (http://dataweigh.com) Model CP225D similar model CPA225D
Olympus IX51 Inverted Light Microscope Olympus (http://olympusamerica.com Contact vendor
Olympus DP71 microscope digital camera Olympus (http://olympusamerica.com Contact vendor
external power supply unit- white light for Olympus microscope Olympus (http://olympusamerica.com TH4-100
10x, 20, and 40x microscope objectives Olympus (http://olympusamerica.com Contact vendor
Scanning Electron Microscope Hitachi (http://hitachi-hitec.com/global/em/sem/sem_index.html) model S-4800
Transmission Electron Microscope Zeiss (http://zeiss.com/microscopy/en_de/products.html) model Libra 120
Table Top Work Station Unidirectional Flow Clean Bench Envirco (http://envirco-hvac.com) model PNG62675 Used for sterile cell culture technique

References

  1. Klinman, J. P. The copper-enzyme family of dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase: resolving the chemical pathway for substrate hydroxylation. The Journal of biological chemistry. 281, 3013-3016 (2006).
  2. Uauy, R., Olivares, M., Gonzalez, M. Essentiality of copper in humans. The American journal of clinical nutrition. 67, 952S-959S (1998).
  3. Karlsson, H. L., Cronholm, P., Gustafsson, J., Copper Moller, L. oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chemical research in toxicology. 21, 1726-1732 (2008).
  4. Parekh, G., et al. Layer-by-layer nanoencapsulation of camptothecin with improved activity. International journal of pharmaceutics. 465, 218-227 (2014).
  5. Harrington, M. J., Masic, A., Holten-Andersen, N., Waite, J. H., Fratzl, P. Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science. 328, 216-220 (2010).
  6. Keyson, D., et al. CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method. Materials Research Bulletin. 43, 771-775 (2008).
  7. Liu, B., Zeng, H. C. Mesoscale organization of CuO nanoribbons: formation of ‘dandelions’. J Am Chem Soc. 126, 8124-8125 (2004).
  8. Peng, M., et al. Controllable synthesis of self-assembled Cu2S nanostructures through a template-free polyol process for the degradation of organic pollutant under visible light. Materials Research Bulletin. 44, 1834-1841 (2009).
  9. Deodhar, S., Huckaby, J., Delahoussaye, M., DeCoster, M. A. High-Aspect Ratio Bio-Metallic Nanocomposites for Cellular Interactions. IOP Conference Series: Materials Science and Engineering. 64, 012014 (2014).
  10. Montes-Burgos, I., et al. Characterisation of nanoparticle size and state prior to nanotoxicological studies. Journal of Nanoparticle Research. 12, 47-53 (2010).
  11. Wiogo, H. T., Lim, M., Bulmus, V., Yun, J., Amal, R. Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS). Langmuir. 27, 843-850 (2011).
  12. Yunker, P. J., Still, T., Lohr, M. A., Yodh, A. G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature. 476, 308-311 (2011).
  13. Kahler, H., Lloyd Jr, B., Eden, M. Electron Microscopic and Other Studies on a Copper–Cystine Complex. The Journal of Physical Chemistry. 56, 768-770 (1952).
  14. Furia, E., Sindona, G. Complexation of L-cystine with metal cations. Journal of Chemical & Engineering Data. 55, 2985-2989 (2010).
  15. Hawkins, C., Perrin, D. Polynuclear Complex Formation. II. Copper (II) with Cystine and Related Ligands. Inorganic Chemistry. 2, 843-849 (1963).
  16. Hallman, P., Perrin, D., Watt, A. E. The computed distribution of copper (II) and zinc (II) ions among seventeen amino acids present in human blood plasma. Biochem. J. 121, 549-555 (1971).
  17. Jensen, L. S., Maurice, D. V. Influence of sulfur amino acids on copper toxicity in chicks. The Journal of nutrition. 109, 91-97 (1979).
  18. Lee, Y., Choi, J. R., Lee, K. J., Stott, N. E., Kim, D. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology. 19, 415604 (2008).
  19. Hume, J., et al. Engineered coiled-coil protein microfibers. Biomacromolecules. 15, 3503-3510 (2014).
check_url/kr/52901?article_type=t

Play Video

Cite This Article
Cotton Kelly, K., Wasserman, J. R., Deodhar, S., Huckaby, J., DeCoster, M. A. Generation of Scalable, Metallic High-Aspect Ratio Nanocomposites in a Biological Liquid Medium. J. Vis. Exp. (101), e52901, doi:10.3791/52901 (2015).

View Video