Summary

对磷酸增强富集制备高度多孔配位聚合物涂层的孔聚合物石柱的

Published: July 14, 2015
doi:

Summary

A procedure for the preparation of porous hybrid separation media composed of a macroporous polymer monolith internally coated by a high surface area microporous coordination polymer is presented.

Abstract

We describe a protocol for the preparation of hybrid materials based on highly porous coordination polymer coatings on the internal surface of macroporous polymer monoliths. The developed approach is based on the preparation of a macroporous polymer containing carboxylic acid functional groups and the subsequent step-by-step solution-based controlled growth of a layer of a porous coordination polymer on the surface of the pores of the polymer monolith. The prepared metal-organic polymer hybrid has a high specific micropore surface area. The amount of iron(III) sites is enhanced through metal-organic coordination on the surface of the pores of the functional polymer support. The increase of metal sites is related to the number of iterations of the coating process.

The developed preparation scheme is easily adapted to a capillary column format. The functional porous polymer is prepared as a self-contained single-block porous monolith within the capillary, yielding a flow-through separation device with excellent flow permeability and modest back-pressure. The metal-organic polymer hybrid column showed excellent performance for the enrichment of phosphopeptides from digested proteins and their subsequent detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The presented experimental protocol is highly versatile, and can be easily implemented to different organic polymer supports and coatings with a plethora of porous coordination polymers and metal-organic frameworks for multiple purification and/or separation applications.

Introduction

多孔配位聚合物(的PCP)是基于由有机配位体与重复在1,2或3个维度,可以是无定形或结晶1-3延伸协调实体联金属中心配位化合物。在最近几年中,此类多孔材料已引起了广泛的关注,因为它们的高孔隙率,宽化学可调性,并且它们的稳定性。主治医师已探索了广泛的应用,包括气体储存,气体分离,和催化3-6,和最近,主治医师的第一分析应用已经描述7。

因为它们的增强的化学功能和高孔隙率的PCP已针对其巨大潜力的纯化过程和色谱分离的提高,以及一些关于本主题的报告已经发表7-13。然而,初级保健医生的表现并不在目前的equivaleNT水平可能存在的色谱材料,由于通过这些固体填充床的大颗粒间的空隙快速扩散,因为它们通常是不规则形状的颗粒或晶体的形态。这个不规则分布填料导致低于预期的性能,以及高柱背压和不希望的峰形形貌14,15。

为了通过颗粒间的空隙,以解决快速扩散的问题,并伴随地提升的PCP的用于分析应用的性能的基础上,一个大孔聚合物整料16的混合材料的发展,它包含大孔的表面上的PCP会是可取的。聚合物整料是自包含的,单件材料,可以通过它们的气孔维持对流,这使得它们的最有效的替代品对珠粒填料,并已成功地由几个C商品化1 ompanies 17,18。多孔聚合物整料通常是基于一个单体的聚合和在致孔剂,这是典型的有机溶剂二元混合物的存在下,交联剂上。获得的单片材料具有microglobular结构和高的孔隙率和流动渗透性。

一种简单的方法来统一这些材料以制备含有五氯酚聚合物整料是基于在整体件的聚合混合物中直接加入作为合成的PCP的。这种方法导致的PCP大多埋在聚合物支架,和不活跃的最终材料14,15的进一步应用。不同的合成方法显然需要以,例如,开发的PCP,或晶体金属 – 有机骨架(MOFs)其中大部分包含在晶体内的孔是从聚合物整料的大孔可访问的均匀的膜。

吨“>此处我们报告一个简单协议,用于基于与合适的官能团为的PCP的连接,可以很容易地实现为大孔聚合物载体上的金属 – 有机聚合物混合材料(卫生部)的制备方法的自包含单-piece聚合物整料与最佳的性能流通应用的列格式的聚合物合成过程之后是一个简单的室温溶液系 方法上的整体件19-20的孔的内表面长出的PCP涂层。作为第一个例子,我们描述内的大孔聚(苯乙烯 – 二乙烯基苯 – 甲基丙烯酸)整料的制备的铁(III)benzenetricarboxylate(FeBTC)配位聚合物膜构成。这个方法是有效的用于制备的散装粉末以及毛细管柱和所描述的协议是很容易实现的其他的PCP。作为MOPHs作为功能材料的流动THROU的电位的例子GH应用,我们应用了开发FeBTC卫生部其中包含一个致密的涂层的Fe(III)的中心,以从消化蛋白质混合物利用磷酸和Fe的结合亲和力富集磷酸(三)。该开发协议21包括三个主要部分:大孔有机聚合物整体支持的准备;整料的孔的表面上的PCP涂层的增长;应用磷酸的富集。

Protocol

注:在开始之前,检查所有相关的材料数据表(MSDS)。几个在合成和应用程序使用的化学品是有毒的。请遵守所有适当的安全措施,并使用足够的保护设备(白大褂,全长长裤,闭趾鞋,防护眼镜,手套)。处理液氮氮吸附测量(绝缘手套,面罩)时,请使用所有低温个人防护装备。 1.多孔聚合物的制备巨石散装和毛细管柱格式本体聚合物为整体式表征通过碱?…

Representative Results

在有机聚合物整料的细孔表面的PCP生长的示意图示于图1。在该图中,我们示出了初始的Fe(III)原 ​​子保留在原聚合物整料的细孔表面配位的羧酸官能团。使用协议本文所述附加的有机配位体和Fe(III)离子被添加到表面,塑造聚合物整料内的多孔协调网络。 图1还示意性地示出了使用所制备的毛细管卫生部列作为用于流通支持富集磷酸肽。表面积和孔分布的测量,用?…

Discussion

原聚合物整料包含能够结合金属羧酸官能团。协调对原始材料的初始金属位点,我们能够以生长PCP涂层( 图1A),结合了许多附加的金属位点成形的微孔网络。这使得所提出的卫生部材料萃取或纯化步骤如涉及金属物质,如固定的金属离子亲和层析(IMAC)技术的吸引力。使用对磷酸化肽的富集的毛细管柱的一般方法示于图1B。

大量粉末巨石的准备使?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work has been performed at the Molecular Foundry, Lawrence Berkeley National Laboratory and supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the US Department of Energy, under Contract No. DE-AC02–05CH11231. The financial support of F.M. by a ME-Fulbright fellowship and A.S. by Higher Education Commission of Pakistan are gratefully acknowledged.

Materials

Polyimide-coated capillaries Polymicro Technologies TSP100375 100 μm i.d.
3-(trimethoxysilyl)propyl methacrylate, 98% Sigma-Aldrich 440159
Styrene, 99% Sigma-Aldrich W323306 Technical grade
Divinylbenzene, 80% Sigma-Aldrich 414565
Methacrylic acid, 98% Mallinckrodt MK150659
Toluene, ≥99.5% EMD chemicals MTX0735-6
Isooctane, ≥99.5% Sigma-Aldrich 650439
2,2'-azobisisobutyronitrile, 98% Sigma-Aldrich 441090
Aluminium oxide (basic alumina) Sigma-Aldrich 199443
Iron (III) chloride hexahydrate, 97% Sigma-Aldrich 236489
1,3,5-benzenetrycarboxylic acid, 95% Sigma-Aldrich 482749
Acetonitrile, ≥99.5% Sigma-Aldrich 360457
Ammonium bicarbonate, ≥99.5% Sigma-Aldrich 9830
Trifluoroacetic acid, ≥99% Sigma-Aldrich 302031
Ethanol, ≥99.8% Sigma-Aldrich 2854
Iodoacetamide, ≥99% Sigma-Aldrich I1149
Dithiothreitol, ≥99% Sigma-Aldrich 43819
Monobasic sodium phosphate dihydrate, ≥99% Sigma-Aldrich 71505
Dibasic sodium phosphate dihydrate, ≥99% Sigma-Aldrich 71643
Phosphoric acid, ≥85% Sigma-Aldrich 438081
2,5-dihydroxybenzoic acid, ≥99% Sigma-Aldrich 85707
Trypsin Sigma-Aldrich T8003 Bovine pancreas
β-casein Sigma-Aldrich C6905 Bovine milk
ZipTip pipette tips Merck Millipore ZTC18S096 C18 resin

References

  1. Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 402, 276-279 (1999).
  2. Kitagawa, S., Kitaura, R., Noro, S. i. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334-2375 (2004).
  3. Furukawa, H., Cordova, K. E., O’Keeffe, M., Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science. 341, 974 (2013).
  4. Ma, S., Zhou, H. C. Gas storage in porous metal-organic frameworks for clean energy applications. Chem. Commun. 46, 44-53 (2010).
  5. Li, J. R., Sculley, J., Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 112, 869-932 (2012).
  6. Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450-1459 (2009).
  7. Gu, Z. Y., Yang, C. X., Chang, N., Yan, X. P. Metal-organic frameworks for analytical chemistry: From sample collection to chromatographic separation. Acc. Chem. Res. 45, 734-745 (2012).
  8. Ahmad, R., Wong-Foy, A. G., Matzger, A. J. Microporous coordination polymers as selective sorbents for liquid chromatography. Langmuir. 25, 11977-11979 (2009).
  9. Yang, C. X., Yan, X. P. Metal-organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics. Anal. Chem. 83, 7144-7150 (2011).
  10. Fu, Y. Y., Yang, C. X., Yan, X. P. Control of the coordination status of the open metal sites in metal-organic frameworks for high performance separation of polar compounds. Langmuir. 28, 6802-6810 (2012).
  11. Gu, Z. Y., Yan, X. P. Metal-organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene. Angew. Chem. Int. Ed. 49, 1477-1480 (2010).
  12. Chang, N., Gu, Z. Y., Yan, X. P. Zeolitic imidazolate framework-8 nanocrystal coated capillary for molecular sieving of branched alkanes from linear alkanes along with high-resolution chromatographic separation of linear alkanes. J. Am. Chem. Soc. 132, 13645-13647 (2010).
  13. Yu, L. Q., Xiong, C. X., Yan, X. P. Room temperature fabrication of post-modified zeolitic imidazolate-90 as stationary phase for open-tubular capillary electrochromatography. J. Chromatogr. A. 1343, 188-194 (2014).
  14. Fu, Y. Y., Yang, C. X., Yan, X. P. Incorporation of metal-organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules. Chem. Commun. 49, 7162-7164 (2013).
  15. Lin, C. L., Lirio, S., Chen, Y. T., Lin, C. H., Huang, H. Y. A novel hybrid metal-organic framework-polymeric monolith for solid-phase extraction. Chem. Eur. J. 20, 3317-3321 (2014).
  16. Svec, F. Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation. J. Chromatogr. A. 1217, 902-924 (2010).
  17. Shekhah, O., et al. Step-by-step route for the synthesis of metal-organic frameworks. J. Am. Chem. Soc. 129, 15118-15119 (2007).
  18. Shekhah, O., Fu, L., Belmabkhout, Y., Cairns, A. J., Giannelis, E. P., Eddaoudi, M. Successful implementation of the stepwise layer-by-layer growth of MOF thin films on confined surfaces: mesoporous silica foam as a first case study. Chem. Commun. 48, 11434-11436 (2012).
  19. Saeed, A., Maya, F., Xiao, D. J., Naham-ul-Haq, M., Svec, F., Britt, D. K. Growth of a highly porous coordination polymer on a macroporous polymer monolith support for enhanced immobilized metal ion affinity chromatographic enrichment of phosphopeptides. Adv. Funct. Mater. 24, 5797-5710 (2014).
  20. Krenkova, J., Lacher, N. A., Svec, F. Control of selectivity via nanochemistry: Monolithic capillary column containing hydroxyapatite nanoparticles for separation of proteins and enrichment of phosphopeptides. Anal. Chem. 82, 8335-8341 (2010).
  21. Jabeen, F., et al. Silica-lanthanum oxide: Pioneer composite of rare-earth metal oxide in selective phosphopeptides enrichment. Anal. Chem. 84, 10180-10185 (2012).
  22. Hussain, D., et al. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids. Anal. Chim. Acta. 775, 75-84 (2013).
  23. Aprilita, N. H., et al. Poly(glycidyl methacrylate/divinylbenzene)-IDA-FeIII in phosphoproteomics. J. Proteom. Res. 4, 2312-2319 (2005).
  24. Lo, C. Y., Chen, W. Y., Chen, C. T., Chen, Y. C. Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. J. Proteom. Res. 6, 887-893 (2007).
  25. Aryal, U. K., Ross, A. R. S. Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry. Rapid Commun. Mass. Spectrom. 24, 219-231 (2010).
  26. . . Select Iron Affinity Gel Technical Bulletin. , (2015).
check_url/kr/52926?article_type=t

Play Video

Cite This Article
Lamprou, A., Wang, H., Saeed, A., Svec, F., Britt, D., Maya, F. Preparation of Highly Porous Coordination Polymer Coatings on Macroporous Polymer Monoliths for Enhanced Enrichment of Phosphopeptides. J. Vis. Exp. (101), e52926, doi:10.3791/52926 (2015).

View Video